Journals →  Chernye Metally →  2024 →  #9 →  Back

Machine-building technologies
ArticleName Evaluation of the depth and degree of work hardening during rough turning of high-manganese steel
DOI 10.17580/chm.2024.09.11
ArticleAuthor V. P. Zakharova, E. G. Zlotnikov, M. A. Admakin, M. O. Gilvitinov
ArticleAuthorData

Empress Catherine II Saint Petersburg Mining University, St. Petersburg, Russia

V. P. Zakharova, Cand. Eng., Associate Prof., Dept. of Mechanical Engineering, e-mail: zakharova_vp@pers.spmi.ru
E. G. Zlotnikov, Cand. Eng., Associate Prof., Dept. of Mechanical Engineering, e-mail: Zlotnikov_EG@pers.spmi.ru
M. A. Admakin, Cand. Eng., Associate Prof., Dept. of Mechanical Engineering, e-mail: Admakin_MA@pers.spmi.ru
M. O. Gilvitinov, Student, Dept. of Mechanical Engineering1, e-mail: s210468@stud.spmi.ru

Abstract

The present work is devoted to the study of the depth of the hardened layer and the degree of work hardening during rough turning of high-manganese steel grade 110G13L (Hadfield steel). The work considers the special properties, scope and problems arising during machining of Hadfield steel. The work presents the results of the studies carried out during rough external turning of a cast workpiece with a round cross-section. The optimal composition of the reagent and etching time were determined to assess changes in the structure of steel due to work hardening, and a microstructural analysis was carried out. The degree of hardening of the hardened layer was assessed. The dependence of the degree of hardening obtained during rough turning on the depth was studied. The results obtained make it possible to develop a strategy for subsequent machining of Hadfield steel workpieces. The work provides recommendations on the choice of processing methods and metal-cutting tools.

keywords Work hardening, hardening, turning process, machinability, cutting conditions, tool wear, high-manganese steel, microhardness
References

1. Bolobov V. I., Bochkov V. S., Akhmerov E. V. et al. On the influence of surface hardening on the impact-abrasive wear resistance of Hadfield steel. Uprochnyayushchie tekhnologii i pokrytiya. 2020. Vol. 16. No. 6 (186). pp. 252–255.
2. Zagorsky Ya. V., Zagorsky V. K., Kusova I. V. Increasing the durability of intensively wearing parts of road construction machines. Neftegazovoe delo. 2016. No. 1. pp. 236–254.
3. Varela L. B., Tressia G., Masoumi M., Bortoleto E. M. et al. Roller crushers in iron mining, how does the degradation of Hadfield steel components occur? Engineering Failure Analysis. 2021. Vol. 122. 105295. DOI: 10.1016/j.engfailanal.2021.105295
4. Zhukov I. A., Smolyanitsky B. N., Timonin V. V. Improvement of down-the-hole air hammer efficiency by optimizing shapes of colliding parts. Journal of Mining Science. 2018. Vol. 2, Iss. 54. pp. 212–217. DOI: 10.1134/S1062739118023569
5. Ivanov S. L., Ivanova P. V., Kuvshinkin S. Y. Promising model range career excavators operating time assessment in real operating conditions. Journal of Mining Institute. 2020. Vol. 242, Iss. 2. pp. 228–233. DOI: 10.31897/PMI.2020.2.228
6. Kim J. H., Lee M.-K., Jang W., Lee J.-H. Strain behavior of very new high manganese steel for 200,000 m3 LNG cryogenic storage tank. Energy. 2023. Vol. 271. 126889.
7. Admakin M. A., Semenyuk N. A., Pichuzhnikov A. V. Study of the machinability of Hadfield steel by cutting. The II International Student Scientific and Practical Conference “Scientific Potential of Youth and Technical Progress” 2019. pp. 34–37. DOI: 10.26160/2618-7493-2019-2-34-37
8. Jacob R., Raman Sankaranarayanan S., Kumaresh Babu S. P. Recent advancements in manganese steels-A review. Materials Today: Proceedings. 2019. Vol. 27. pp. 2852–2858.
9. Marukovich E. I., Usherenko S. M., Andrushevich A. A., Reut O. P., Yazdani-Cherati Javad. Dynamic alloying of high manganese steel. Foundry production and metallurgy. 2020. Vol. 2. pp. 69–74. DOI: 10.21122/1683-6065-2020-2-69-74
10. Wang Z., Yang Y., Chen C., Li Y. et al. Effect of surface impacting parameters on wear resistance of high manganese steel. Coatings. 2023. Vol. 13. 539. DOI: 10.3390/coatings13030539
11. Nguyen Hong Hai, Nguyen Danh Trung, Pham Mai Khanh et al. Strain hardening of Hadfield high manganese steels. Materials Today: Proceedings. 2022. Vol. 66. pp. 2933–2937. DOI: 10.1016/j.matpr.2022.06.561
12. Pyatykh A., Savilov A., Timofeev S. Investigation of hadfield steel machinability in milling operations. Key Engineering Materials. 2022. Vol. 910. pp. 123–128. DOI: 10.4028/p-8p4ud2
13. Bolobov V. I., Akhmerov E. V., Rakitin I. V. Influence of rock type on regularities of excavator bucket tooth crown wear. Mining Informational and Analytical Bulletin. 2022. Vol. 6, Iss. 2. pp. 189–204. DOI: 10.25018/0236_1493_2022_62_0_189
14. Lychagin D. V., Filippov A. V., Novitskaya O. S., Kolubaev A. V. Determination of sliding and twinning shear stress during microindentation of Hadfield steel single crystals. Letters on Materials. 2020. Vol. 10, Iss. 4. pp. 451–456. DOI: 10.22226/2410-3535-2020-4-451-456
15. Russakova A. et al. Effect of the dislocation substructure parameters of Hadfield steel on its strain hardening. Materials. 2023. Vol. 16, Iss. 4. 1717. DOI: 10.3390/ma16041717
16. Sun S., Zhao A., Wu Q. Effect of strain rate on the work-hardening rate in high-Mn steel. Materials Science and Technology. 2017. Vol. 33, Iss. 11. pp. 1306–1311. DOI: 10.1080/02670836.2017.1288690
17. Bezyazychny V. F. Justification of the feasibility of assigning cutting modes taking into account ensuring the required quality of the material of the part`s surface layer. Reference book. Inzhenerny zhurnal. 2021. No. 7 (292). pp. 3–17. DOI: 10.14489/hb.2021.07.pp.003-017
18. Rakunov Yu. P., Abramov V. V., Rakunov A. Yu. Criteria for machinability of difficult-to-machine materials, optimization of tools and cutting modes in precision group production. Stankoinstrument. 2021. No. 4 (25). pp. 62–73. DOI: 10.22184/2499-9407.2021.25.4.62.72
19. Ekici E. Milling behavior of Hadfield steel with cryogenically treated tungsten carbide inserts. Materialpruefung/Materials Testing. 2015. Vol. 57, Iss. 11-12. pp. 968–976. DOI: 10.3139/120.110811
20. Nekrasov R. Yu., Tempel O. A., Vaskov D. E. Determination of optimal cutting conditions when processing difficult-to-machine materials. Izvestiya Tulskogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2022. No. 4. pp. 484–489. DOI: 10.24412/2071-6168-2022-4-484-489
21. Zellagui R., Hemmouche L., Ait-Sadi H., Chelli A. Effect of element addition, microstructure characteristics, mechanical properties, machining and welding processes of the Hadfield austenitic manganese steel. Archives of Metallurgy and Materials. 2022. Vol. 67, Iss. 3. pp. 863–868. DOI: 10.24425/amm.2022.139676
22. Artamonov E. V., Vasilega D. S., Tveryakov A. M. Determination of the temperature of maximum performance of throw-away cutting carbide inserts: monograph. Edited by M. Kh. Uteshev. Tyumen : TyumGNGU, 2015. 102 p.
23. Duskaraev N., Umirzakov D. U., Alizhonova M. M. Stability of the cutting tool and cutting speed. Sovremennye innovatsii, sistemy i tekhnologii. 2022. Vol. 2. No. 2. pp. 409–416. DOI: 10.47813/2782-2818-2022-2-2-0409-0416
24. Akinshin R.N. Technological support of surface quality and cost reduction during blade processing of workpieces from difficult-to-machine materials. Naukoemkie tekhnologii v mashinostroenii. 2014. No. 5 (35). pp. 9–13.
25. Maksarov V., Efimov A., Olt J. Improving the quality of hole processing in welded products made of dissimilar materials with a new boring tool. International Journal of Advanced Manufacturing Technology. 2022. Vol. 118, Iss. 3. pp. 1027-1042. DOI: 10.1007/s00170-021-07975-7
26. Kulchitskiy A. Optical inspection systems for axisymmetric parts with spatial 2d resolution. Symmetry. 2021. Vol. 13, Iss. 7. 1218. DOI: 10.3390/sym13071218
27. Vologzhanina S. A., Igolkin A. F. , Peregudov A. А. Research of properties of austenitic steels. Key Engineering Materials. 2021. Vol. 887. pp. 242–246. DOI: 10.4028/www.scientific.net/KEM.887.242
28. Maksarov V. V., Klochkov D. A. Features of the distribution of magnetic induction during magnetic-abrasive processing of synchronizers made of structural alloy steel. Chernye Metally. 2023. No. 7. pp. 78-85.
29. Kukharova T.V., Ilyushin Y. V., Asadulagi M.-A. M. Investigation of the OA-300M electrolysis cell temperature field of metallurgical production. Energies. 2022. Vol. 15. 9001. DOI: 10.3390/en15239001
30. Kabaldin Yu. G., Laptev I. L., Shatagin D. A., Sery S. V. On-line diagnostics of output parameters of the cutting process based on fractal and wavelet analysis using National Instruments and Nvidia CUDA software and hardware. Vestnik mashinostroeniya. 2014. No. 8. pp. 80-82
31. Bezazychnyi V. F., Szczerek M., Pervov M. L., Timofeev M. V. et al. The study of the effect of temperature on the ability of metals to accumulate energy during their plastic deformation. Journal of Mining Institute. 2019. Vol. 235. pp. 55-59. DOI: 10.31897/PMI.2019.1.55
32. GOST 19048-80. Hexagon throw-away (indexable) carbide cutting inserts with 80° included angle, with cylindrical holes and chip-breaking flutes. Design and dimensions. Introduced: 01.01.1982.
33. Beckert M., Klemm H. Handbuch der metallographischen Aeverfahren. Translated from Germany. 2nd edition, revised and additional. Moscow : Metallurgiya, 1988. 400 p.
34. Kovalenko V. S. Metallographic reagents: reference book. Moscow : Metallurgiya, 1981. 120 p.
35. GOST 5639-82. Steels and alloys. Methods for detection and determination of grain size. Introduced: 01.01.1983.
36. Klevtsov V. A., Timofeev D. Y., Khalimonenko A. D. Improved design of manufacturing processes for mining machines. basing concepts. Russian Engineering Research. 2023. Vol. 43, Iss. 11. pp. 1367-1375. DOI: 10.3103/S1068798X23110151
37. Schipachev A., Aljadly M., Ganzulenko O., Razzhivin V. et al. Evaluating the effectiveness of magnetic-pulse treatment for healing continuity defects in the metal of oil and gas pipelines. Metals. 2023. Vol. 13, Iss. 11. 1875.

Language of full-text russian
Full content Buy
Back