ArticleName |
Scientific and technological principles of the complex use of serpentinite of the Karmaninskoe deposit |
References |
1. Karapet'yants M. Kh., Drakin S. I. General and inorganic chemistry. Moscow: Khimiya, 2000. 592 p. 2. Bryanchaninova N. I., Makeev A. B. Serpentinites of the Polar Urals. What are they like. Vestnik Instituta Geologii Komi Nauchnogo Tsentra Uralskogo Otdeleniya RAN. 2004. No. 2. pp. 15–19. 3. Smirnova O. A., Bugakov S. V. Production of synthetic serpentinite. Collection of scientific papers based on the materials of the International scientific and practical conference, Tambov, April 30, 2014. pp. 132–133. 4. Chen T. T., Dutrizac J. E., White C. W. Serpentine ore microtextures occurring in the magnola magnesium process. JOM: Journal of Minerals, Metals & Materials Society. 2000. Vol. 52. pp. 20–22. 5. Nazarova L. N., Khusnutdinov V. A. Obtaining liquid glass from serpentinite. Vestnik Kazanskogo Tekhnologicheskogo Universiteta. 2003. No. 1. pp. 57–59. 6. Perederin Yu. V., Usoltseva I. O., Krasnoshchekova D. V. Basic technologies for obtaining magnesium oxide from serpentinite. Polzunovskiy Vestnik. 2019. No. 2. pp. 123–127. 7. Kameneva E. E., Lebedeva G. A., Sokolov V. I., Frolov P. V. Study of the material composition and technological properties of Karelia serpentinites. Materials of the annual meeting of the Russian Mineralogical Society. St. Petersburg, 2006. pp. 22–24. 8. Osadchenko I. M., Lyabin M. P., Romanovskova A. D. Magnesium oxide: properties, methods of preparation and application (analytical review). Prirodnye Sistemy i Resursy. 2018. Vol. 8, No. 3. pp. 5–14. 9. Carmignano O., Vieira S., Brandao P., Bertoli A., Lago R. Serpentinites: mineral structure, properties and technological applications. Journal of the Brazilian Chemical Society. 2019. Vol. 31, Iss.1. pp. 1–13. 10. Hirauchi K., Nagata Y., Kataoka K., Oyanagi R., Okamoto A., Michibayashi K. Cataclastic and crystal-plastic deformation in shallow mantle-wedge serpentinite controlled by cyclic changes in pore fluid pressures. Earth and Planetary Science Letters. 2021. Vol. 576. pp. 117–232. 11. Navarro R., Pereiraab D., Fernández de Arévalo E., Sebastián-Pardod E. M., Rodriguez-Navarrod C. Weathering of serpentinite stone due to in situ generation of calcium and magnesium sulfates. Construction and Building Materials. 2021. Vol. 280. pp. 122–402. 12. Averina G. F., Chernykh T. N., Orlov A. A., Kramar L. Ya. Research of interrelation between volume deformation, composition and structural characteristics of magnesia binding materials. Vestnik Yuzhno-Uralskogo Gosudarstvennogo Universiteta. Seriya: Stroitelstvo i Arkhitektura. 2017. Vol. 17, No. 3. pp. 40–47. 13. Khamidov R. A. Panchenkova L. A. Resources of magnesia refractory raw materials of Uzbekistan. Geologiya va Mineral Resurslar. 2000. No. 3. pp. 25–27. 14. Federov N. F., Andreev M. A., Khartukova A. A. Binder compositions based on mixtures of heat-treated serpentinite and aqueous solutions of rare earth nitrates. Zhurnal Prikladnoy Khimii. 2006. Vol. 79, No. 7. pp. 1226а–1226. 15. Umirov F. E., Shodikulov Zh. M., Umirov U. F. Research of processes of obtaining chlorate-magnesium defoliant on the basis of serpentinite of the Arvaten deposit. Put' Nauki (The Way of Science). 2020. No. 10. pp. 19–22. 16. Zyryanov V. A. Features of the mineral composition of serpentinites in the zones of complex veins at the deposits of chrysotile-asbestos of the Bazhenov subtype. Vestnik Uralskogo Otdeleniya Rossiyskogo Mineralogicheskogo Obshchestva. 2008. No. 5. pp. 36–42. 17. Umirov F. E., Nomozova G. R., Shodiqulov J. M. Physicochemical properties and agrochemical effectiveness of new defoliants based on sodium, magnesium and calcium chlorates containing surfactants. Universum: Khimiya i Biologiya. 2021. No. 1–1. pp. 90–95. 18. Khanin D. A., Zakharov A.V. Unusual mineralization of quartz vein in serpentinites of Lipovsky deposit (Middle Urals). Vestnik Uralskogo Otdeleniya Rossiyskogo Mineralogicheskogo Obshchestva. 2013. No. 10. pp. 124–126. 19. Kisner A. S., Pashchenko N. V., Vakalova T. V. Magnesia-silicate ceramic materials based on Khakass serpentinites. Proc. of the International conference, Tomsk, October 09–13, 2017. pp. 320–321. 20. Zulumyan N. O., Oganesyan E. B., Oganesyan Z. G., Karakhanyan S. S. On the thermal acid treatment of serpentinites of the northeastern coast of Lake Sevan. Doklady Natsionalnoy Akademii Nauk Respubliki Armeniya. Neorganicheskaya Khimiya. 2002. Vol. 102, No. 3. pp. 55–58. 21. Gabdullin A. N., Kalinichenko I. I., Pecherskikh E. G., Semenishchev V. S. Obtaining of highly dispersed silica by the method of nitric acid processing of serpentinite. Uchenye Zapiski Tavricheskogo Natsionalnogo Universiteta im. V. I. Vernadskogo. Seriya: Biologiya, Khimiya. 2011. Vol. 24, No. 3. pp. 44–47. 22. Pat. 2285666 Russian Federation. 23. Umirov F. E, Fayzullaev N. I., Usanbayev N. Kh., Muzaffarov A. M., Umirov U. F., Pirnazarov F. G. Mineralogical and technological evaluation of saponites of the Uchtut residential place in the Republic of Uzbekistan. International Journal of Control and Automation. 2020. Vol. 13, No. 4. pp. 230–236. 24. Döbelin N., Kleeberg R. Profex: a graphical user interface for the Rietveld refinement program BGMN. Journal of Applied Crystallography. 2015. Vol. 48. pp. 1573–1580. 25. Gabdullin A. N. Development of a method for nitric acid processing of serpentinite from the Bazhenov deposit: dis. for the degree of Candidate of Engineering Sciences. Ekaterinburg, 2015. 135 p. 26. Vladimirov A. S., Katyshev S. F., Teslyuk L. M. Improvement of the washing process of amorphous silicon dioxide obtained by hydrochloric acid leaching of serpentinite. Khimicheskaya Tekhnologiya. 2015. Vol. 16, No. 3. pp. 139–141. |