Journals →  Obogashchenie Rud →  2022 →  #1 →  Back

TECHNOLOGICAL MINERALOGY
ArticleName Methodology for predicting the washability of apatite ores (Kirovsky mine, Kola Peninsula)
DOI 10.17580/or.2022.01.05
ArticleAuthor Zakharova A. A., Voytekhovsky Yu. L.
ArticleAuthorData

St. Petersburg Mining University (Saint-Petersburg, Russia):

Zakharova A. A., Postgraduate Student, zakharova.alena27614@gmail.com
Voytekhovsky Yu. L., Professor, Doctor of Geological and Mineralogical Sciences, Professor, Voytekhovskiy_YuL@pers.spmi.ru

Abstract

A statistical approach has been proposed that allows strictly defining the structure of a rock (ore), isolating fields of various structures in barycentric diagrams, and comparing them with the processing results. An original method is proposed for predicting the washability defined as the separation of apatite grains from polymineral aggregations at the crushing and flotation stages. It develops and formalizes the current approach that combines the mineral composition of ores, their structures and textures into a multifactor semiquantitative model. The method is based on the calculation of the probabilities (frequencies) of all types of intergranular contacts recorded in a symmetric matrix under a microscope in petrographic thin sections. Its canonical diagonal shape allows identifying the rock (ore) structure type. The algebraic theory of quadratic forms is used to demonstrate that the structure identified using this method corresponds to one of the types of n-dimensional nondegenerate quadratic surfaces, where n is the number of minerals in the rock (ore). The structure is invariant for a certain fluctuation in the probabilities of intergranular contacts. The calculated probabilities uniquely identify the imaging point in the corresponding barycentric diagram. The Hardy–Weinberg boundary is important as it corresponds to the ideal uniform mixing of minerals and the balance of various intergranular contacts for any modal composition of rocks (ores). It allows distinguishing fields of different structures in barycentric diagrams. The method proposed offers a means to identify ores with different washability characteristics at early exploration stages.

keywords Kirovsky mine, apatite ore, mineral composition, washability prediction, statistics of intergranular contacts, ore structure, ore texture, multifactor model
References

1. Izoitko V. M. Technological mineralogy and ore evaluation. St. Petersburg: Nauka, 1997. 532 p.
2. Perez-Barnuevo L., Levesque S., Bazin C. Automated recognition of drill core textures: A geometallurgical tool for mineral processing prediction. Minerals Engineering. 2018. Vol. 118. pp. 87–96.
3. Nguyen A., Tungpalan K., Evans C., Manlapig E., Jackson J., Nguyen K., Valenta R. A method for rapid estimation of processing behaviour based on ore texture. Minerals Engineering. 2021. Vol. 171. DOI: 10.1016/j.mineng.2021.107111
4. Kolmogorov A. N. On the logarithmic-normal law of particle size distribution during crushing. Doklady AN SSSR. 1941. Vol. 31, No. 2. pp. 99–101.
5. Korolev V. Yu. On the particle size distribution during crushing. Informatika i Ee Primeneniya. 2009. Vol. 3, No. 3. pp. 60–68.
6. Betekhtin A. G., Genkin A. D., Filimonova A. A., Shadlun T. N. Textures and structures of ores. Moscow: Gosgeoltekhizdat, 1958. 444 p.
7. Zuev V. V. The constitution and properties of minerals. Moscow: Nauka, 1990. 279 p.
8. Zuev V. V. Core-electron crystal chemistry and properties of minerals. St. Petersburg: Nauka, 2009. 270 p.
9. Brodskaya R. L. Thermodynamic (kinetic) criteria for the formation and evolution of the structure of mineral aggregates. Zapiski Rossiyskogo Mineralogicheskogo Obshchestva. 1988. No. 5. pp. 623–633.
10. Brodskaya R. L. Morphology of mineral individuals in igneous rocks and the Onsager reciprocal relations. Zapiski Rossiyskogo Mineralogicheskogo Obshchestva. 2018. No. 5. pp. 96–109.
11. Brodskaya R. L., Marin Yu. B. Energy characteristics of internal boundaries and technological properties of mineral aggregates. Doklady RAN. 1995. Vol. 344, No. 5. pp. 654–656.
12. Voytekhovsky Yu. L. Quantitative analysis of petrographic structures: the method of structural indicatrix and the method of subtraction of accessories. Izvestiya VUZov. Geologiya i Razvedka. 2000. No. 1. pp. 50–54.
13. Voytekhovsky Yu. L., Zakharova A. A. Petrographic structures and Hardy-Weinberg equilibria. Zapiski Gornogo Instituta. 2020. Vol. 242, No. 2. pp. 133–138.
14. Diaz G. F., Ortiz J. M., Silva J. F., Lobos R. A., Egana A. F. Variogram-based descriptors for comparison and classification of rock texture images. Mathematical Geosciences. 2020. Vol. 52. pp. 451–476.
15. Kachanubal T., Udomhunsakul S. Rock textures classification based on textural and spectral features. Engineering and Technology. 2008. Vol. 39. pp. 110–116.
16. Lepisto L., Kunttu I., Visa A. Rock image classification using color features in Gabor space. Journal of Electronic Imaging. 2005. Vol. 14, Nо. 4. pp. 1–3.
17. Lobos R., Silva J. F., Ortiz J. M., Diaz G., Egana A. Analysis and classification of natural rock textures based on new transform-based features. Mathematical Geosciences. 2016. Vol. 48. pp. 835–870.
18. Lotter N. O., Laplante A. R. Statistical benchmark surveying of production concentrators. Minerals Engineering. 2007. Vol. 20. pp. 793–801.
19. Borevich Z. I. Determinants and matrices. Moscow: Nauka, 1988. 184 p.
20. Brylyakov Yu. E. Development of theory and practice of Khibiny deposits apatite-nepheline ores complex beneficiation. Moscow: MGRI, 2004. 44 p.
21. Marchevskaya V. V., Korneeva U. V. Correlations between the components of the material composition in apatite-nepheline ores of the Khibiny massif, Kola Peninsula. Vestnik Murmanskogo Gosudarstvennogo Tekhnicheskogo Universiteta. 2020. Vol. 23, No. 2. pp. 173–181.
22. Elbendary A. M., Aleksandrova T. N., Nikolaeva N. V. Influence of operating parameters on the flotation of the
Khibiny apatite-nepheline deposits. Journal of Materials Research and Technology. 2019. Vol. 8, No. 6. pp. 5080–5090.
23. Sizyakov V. M., Kawalla R., Brichkin V. N. Geochemical aspects of the mining and processing of the large-tonne mineral resourses of the Khibinian alkaline massif. Geochemistry. 2020. Vol. 80, Iss. 3. DOI: 10.1016/j.chemer.2019.04.002.
24. Neradovsky Yu. N., Kompanchenko A. A., Bazay A. V., Baybikova Yu. B. Study of the structural and chemical features of fluorapatite of the Khibiny Massif as a potential raw material for processing. Obogashchenie Rud. 2020. No. 4. pp. 14–20. DOI: 10.17580/or.2020.04.03.

Language of full-text russian
Full content Buy
Back