Journals →  Obogashchenie Rud →  2022 →  #1 →  Back

ORE PREPARATION
ArticleName Advantages of selective grinding using high-pressure grinding rolls combined with air classification
DOI 10.17580/or.2022.01.01
ArticleAuthor Heinicke F., Lieberwirth H., Kühnel R., Alexandrova T. N.
ArticleAuthorData

Köppern Aufbereitungstechnik GmbH & Co. KG (Freiberg, Germany):

Heinicke F., Senior Technologist, PhD in Engineering Sciences, f.heinicke@koeppern.de

 

Technical University of Bergakademie Freiberg (Freiberg, Germany):

Lieberwirth H., Director of Institute for Mineral Processing
Machines, Doctor of Engineering Sciences, Professor, Holger.Lieberwirth@iam.tufreiberg.de

Kühnel R., Researcher

 

Saint-Petersburg Mining University (St. Petersburg, Russia):
Aleksandrova Т. N., Head of Chair, Doctor of Engineering Sciences, Professor, Aleksandrova_TN@pers.spmi.ru

Abstract

It is well known that the use of high-pressure grinding rolls (HPGR) in crushing circuits improves subsequent power consumption through the output of finer material: the yield of fine fractions in the HPGR product is higher than that in the product of traditional crushers (including third and even fourth stage crushing). It has been established that the use of screens in HPGR circuits is inadvisable and would limit the circuit capacity due to lower friction and the fact that screen performance depends on the size of the finished product. In addition, the use of water (its availability and cost) for spiral classifiers, screens, or hydrocyclones remains a major problem in the industry. The alternative option involving air classification has been used in the cement industry for several decades to separate material fractions in the size range of 0.01–1.0 mm, but has yet to find its way to mineral processing plants. It has been shown that volumetric fracturing in HPGR improves subsequent selective separation. Adequate distribution of the ore components in air classifiers allows the separation boundary to be optimized. The expediency of using HPGR in combination with air classification has been substantiated as it allows, in some cases, to eliminate subsequent ball grinding at industrial plants. This is revolutionizing the ore preparation process. The authors are grateful to Köppern for their research support.
The work was carried out with the support of the Russian Foundation for Basic Research (project No. 20-55-12002).

keywords Ore, crushing, material size, high pressure grinding rolls, air classification, crushing, energy efficiency, dry separation
References

1. Baranov V. F. Designs of new operating copper processing plants: process types, equipment selection, industry trends. Obogashchenie Rud. 2021. No. 1. pp. 44–52. DOI: 10.17580/or.2021.01.08.
2. Aleksandrova T. N., Nikolaeva N. V., Lvov V. V., Romashev A. O. Ore processing efficiency improvements for precious metals based on process simulations. Obogashchenie Rud. 2019. No. 2. pp. 8–13. DOI: 10.17580/or.2019.02.02.
3. Vaisberg L. A., Kameneva E. E. Interconnection of structural features and physico-mechanical properties of rocks. Gornyi Zhurnal. 2017. No. 9. pp. 53–58. DOI: 10.17580/gzh.2017.09.10.

4. Aleksandrova T., Nikolaeva N., Lieberwirth H., Aleksandrov A. Selective desintegration and concentration: Theory and practice. E3S Web of Conferences. 2018. Vol. 56. 7 p. DOI: 10.1051/e3sconf/20185603001.
5. Lyan I. P., Panovko G. Ya., Shokhin A. E. Comparative analysis of energy efficiency in the use of vibration-type process machines in resonant and superresonant operating modes. Obogashchenie Rud. 2019. No. 6. pp. 42–49. DOI: 10.17580/or.2019.06.08.
6. Malyarov P. V., Kovalev P. A., Bochkarev A. V., Dolgov A. M. Investigation of mechanisms behind mineral raw materials destruction in ball mills. Obogashchenie Rud. 2018. No. 3. pp. 3–8. DOI: 10.17580/or.2018.03.01.
7. Mütze T. Modelling the stress behaviour in particle bed comminution. International Journal of Mineral Processing. 2016. Vol. 156. pp. 14–23.
8. Costello B., Brown J. A tabletop cost estimate review of several large HPGR projects. Proceedings of the SAG conference. Vancouver, BC, Canada, 2015. pp. 1–24.
9. Schönert K. Einzelkorn-druckzerkleinerung und zerkleinerungskinetik. untersuchungen an kalkstein-, quarz-, und zementklinkerkörnern des größenbereiches 0,1–0,3 mm: Doctoral dissertation. University of Karlsruhe, 1966.
10. Schönert K. Zur auslegung von gutbett-walzenmühlen. Zement-Kalk-Gips. 1985. Vol. 38, No. 12. pp. 728–730.
11. Schönert K. Energetische aspekte des zerkleinerns spröder stoffe. Zement-Kalk-Gips. 1979. Vol. 32, No. 1. pp. 1–9.
12. Schönert K., Knobloch O. Mahlen von zement in der gutbett-walzenmühle. Zement-Kalk-Gips. 1984. Vol. 37, No. 11. pp. 563–568.
13. Klymowsky R., Patzelt N., Knecht J., Burchardt E. Selection and sizing of high pressure grinding rolls. Mineral processing plant design, practice, and control: conference proceedings. 2002. pp. 636–668.
14. Michaelis H. Real and potential metallurgical benefits of HPGR in hard rock ore processing. Proceedings of the Randol innovative metallurgy forum, Perth, W. A., Australia, 21–24 August 2005. pp. 1–9.
15. Gardula A., Das D., DiTrento M., Joubert S. First year of operation of HPGR at Tropicana gold mine — case study. CUPRUM – Czasopismo Naukowo-Techniczne Górnictwa Rud. 2015. Nr 2. ss. 15–36.
16. Vanderbeek J. L., Gunson A. J. Cerro Verde 240.000 t/d concentrator expansion. Proceedings of the SAG conference. Vancouver, BC, Canada, 2015.
17. Heinicke F. Beitrag zur modellierung der zerkleinerung in gutbettwalzenmühlen: Dissertation. Rheinisch-Westfälische technische hochschule Aachen, 2012.
18. Meer F. P., Lessing E., Stocco R. Iron ore final grinding by HPGR and air classification. Presentation at AusIMM iron ore conference, 2015. 20 p.
19. Mütze T., Kretschmar G., Leißner T., Meer F. Segregation of minerals in dynamic air classifiers. Proc. of the XXIX IMPC, Moscow, September 17–21, 2018. Pt. 2. Comminution & classification. Paper 790. pp. 251–260. USB flash drive.
20. Buchmann M., Schach E., Leißner T., Kern M., Mütze T., Rudolph M., Peuker U. A., Tolosana-Delgado R. Multidimensional characterization of separation processes. Part 2: Comparability of separation efficiency. Minerals Engineering. 2020. Vol. 150. DOI: 10.1016/j.mineng.2020.106284.
21. Aydogan N. A., Ergun L., Benzer H. High pressure grinding rolls (HPGR) applications in the cement industry. Minerals Engineering. 2006. Vol. 19. pp. 130–139.
22. Meer F. P. Feasibility of dry high pressure grinding and classification. Proceedings of SAG conference. 25–29 September 2011, Vancouver, Canada. 18 p.

Language of full-text russian
Full content Buy
Back