Journals →  Tsvetnye Metally →  2012 →  #12 →  Back

METAL PROCESSING
ArticleName Oxidation kinetics of the hard alloy AK1M2, alloyed with scandium
ArticleAuthor Berdiev A. E., Ganiev I. N., Niezov Kh. Kh., Eshov B. B., Odinaev Kh. O.
ArticleAuthorData

Institute of Chemistry, named after V. I. Nikitin, Academy of Sciences of Republic of Tajikistan, Dushanbe, Republic of Tajikistan

A. E. Berdiev, Senior Researcher, “Corrosion-resistant materials” Laboratory, e-mail: berdiev75@mail.ru
I. N. Ganiev, Head of the “Corrosion-resistant materials” Laboratory

 

State Scientific-research and Industrial Institution, Academy of Sciences of Republic of Tajikistan, Dushanbe, Republic of Tajikistan

Kh. Kh. Niezov, Senior Researcher
B. B. Eshov, Leading Researcher

 

Dushanbe subsidiary of Lomonosov Moscow State University, Dushanbe, Republic of Tajikistan
Kh. O. Odinaev, Chief Operating Officer

Abstract

By the methods of thermogravimetry and potentiodynamic was studied kinetics of the oxidation and corrosion-electrochemical parameters AK1M2 alloy doped with scandium. It is shown that the oxidation of alloys obeys a parabolic law. Additions of scandium to 0.1% (mas.) increase the rate of oxidation as evidenced by the decrease in the apparent activation energy of oxidation of 114.9 to 52.8 kJ/mol, efficient increase of scandium to 0.5% (mas.) contributes to the apparent activation energy of 86.2 kJ/mol. The magnitude of the true rate of oxidation of (2.13–3.83) · 10–4 kg/(m2·s) depending on the content of doped components. The positive influence of additions of scandium on the corrosion resistance of the alloy AK1M2 source in a neutral medium of electrolyte NaCl. Thus, the addition of scandium reduce the rate of anode corrosion of the alloy from the initial 8.04 to 6.46 g/(m2·h), which 20–25% of the initial state. Pitting and corrosion potentials are shifted in the positive region, which indicate increased stability of the alloys with scandium to pitting corrosion.

keywords Alloy AK1M2, scandium, thermogravimetric method, kinetics of the oxidation, temperature dependence, activation energy, true rate of oxidation, anodic behavior, corrosion resistance
References

1. Vakhobov A. V., Obidov F. U., Vakhobova R. U. Osobochistyy alyuminiy i ego splavy (Ultrapure aluminium and its alloys). Dushanbe : Donish, 1999. Vol. 1–2.
2. Naumkin O. P., Ignatov D. Yu. Izvestiya Akademii Nauk SSSR. Metallurgiya i gornoe delo — Proceedings of USSR Academy of Sciences. Metallurgy and mining. 1963. No. 5. p. 141.
3. Arsenev B. A., Kovba L. S., Bagdasarov Kh. S. Khimiya redkikh elementov (Chemistry of rare elements). Moscow : Nauka, 1983. 164 p.
4. Ganiev I. N., Norova M. T., Obidov F. U., Ubaydulloev T., Berdiev A. E. Doklady Akademii Nauk Respubliki Tadzhikistan — Reports of Academy of Sciences of Republic of Tajikistan. 2002. No. 1. pp. 51–54.
5. Ganiev I. N. Zhurnal prikladnoy khimii — Russian Journal of Applied Chemistry. 2004. Vol. 77, No. 6. pp. 939–943.
6. Ganiev I. N. Zashchita metallov — Protection of Metals and Physical Chemistry of Surfaces. 1995. Vol. 31, No. 6. pp. 597–600.
7. Lepinskikh V. M, Kiselev V. I. Izvestiya Akademii Nauk SSSR. Metally – Proceedings of USSR Academy of Sciences. Metals. 1974. No. 5. pp. 51–54.
8. Foley R. T. Localized corrosion of aluminium alloys. Corrosion. 1986. No. 5. pp. 277–288.
9. Tohma K., Takeuchi S. Electro-chemical polarization characters of aluminium alloys in dilute NaCl solution. Corrosion engineering : Boshoku gijutsu. 1979. Vol. 28, No. 9. pp. 498–504.
10. Nazarov A. P., Lisovskiy A. P., Mikhaylovskiy Yu. N. Zashchita metallov — Protection of Metals and Physical Chemistry of Surfaces. 1990. Vol. 26, No. 1. pp. 13–18.
11. GOST 4233–77. Reaktivy. Natriy khloristyy. Tekhnicheskie usloviya (State Standard 4233–77. Reagents. Sodium chloride. Specifications). Introduced : January 01, 1978.

Language of full-text russian
Full content Buy
Back