Journals →  Tsvetnye Metally →  2012 →  #7 →  Back

METAL PROCESSING
ArticleName Thin vacuum-tight berylliym foils, providing corrosion and ecological safety of products
ArticleAuthor Kaskov V. S.
ArticleAuthorData

Voskresensk Experimental and Technological Center on Special Materials, Belozersky settlement, Moscow Region, Russia:

V. S. Kaskov, Deputy Chief on Science

Abstract

There is described a technology for production of thin vacuum-tight beryllium foils (10–150 mm) with a protective coating. The following features were stated:
1) the lower content of BeO in metal, the higher possibility of production of thin vacuum-tight foils with beryllium content is more than 99%;
2) oxide barrier prevents interaction of beryllium and stainless steel jacket allowing an easy detaching of beryllium foil upon rolling at 600–700 oC;
3) passivated foil is active during the hole rolling cycle providing a standard level of maximum permissible concentration; the foil becomes thin down to 1 μm;
4) rolling of packages is made on modified “Kirchner” mill;
5) purity of the foil production bay is one of the key conditions of successful production process.
The foils, which are manufactured under conditions of commercial production are more cost effective than their import analogues. Industrial application of thin foils (10–20 μm) is possible only in case of their protection against corrosion attacks and the usage of windows of a special structure in items. All-Russian Institute of Aviation Materials (VIAM) started production of trial lots of vacuum-tight beryllium windows with protection coating (10–150 μm), which meets the requirements of world standards.

keywords Foils, vacuum-tight, purity of beryllium, passive foil, erosion cutting, oxides, rolling, maximum permissible concentration of beryllium in air, protection against corrosion
References

1. Dan H. Friar. Beryllium foil fabrication. Patent US, no. 3354538. Current U.S. Classification 29/423, 29/447. Asserted 23.11.1965. Published 28.11. 1967.
2. Tuleushev A. Zh., Lisitsyn V. N., Volodin V. N., Tuleushev Yu. Zh., Kim S. N., Asanov A. B. Sposob polucheniya berillievoy folgi (Method of obtaining the beryllium foil). Patent RF, no. 2199606. C 23 C 14/24. Asserted 22.10.2001. Published 27.02.2003.
3. Kozeratskaya G. N., Matveeva L. A., Zornik V. G. Sposob polucheniya tonkikh samopodderzhivayushchikhsya plenok (Method of obtaining the thin self-sustained films). Patent RF, no. 2040589. C 23 C 14/00, C 23 C 14/24. Asserted 27.03.1990. Published 25.07.1995.
4. Volokita G. I., Karpov E. S., Papirov I. I., Shokurov V. S. Sposob izgotovleniya tonkoy berillievoy folgi (Method of thin beryllium foil production). Patent RF, no. 2036244. С 23 С 14/С 22. Asserted 20.10.1989. Published 27.05.1995.
5. Kimura M., Ogasawara K., Yamaguchi M., Onoue A., Tsukagoshi N. Production of thin beryllium sheet. Patent JP, no. 59021408. Published 02.03.1984.
6. Papirov I. I., Tikhinskiy G. F. Fizicheskoe metallovedenie berilliya (Physical metallurgy of berillium). Moscow : Atomizdat, 1968.
7. Papirov I. I. Struktura i svoystva splavov berilliya (Structure and alloys` properties of beryllium). Moscow : Energiya, 1981.
8. Azhazha V. M., Babun A. V., Vasilev A. A., Kovtun K. V. XVIII Mezhdunarodnaya konferentsiya po fizike radiatsionnykh yavleniy i radiatsionnomu materialovedeniyu : sbornik trudov (XVIII International Conference on physics of radiation phenomenon and radiation science of materials : proceedings). Institute of solid-state physics, materials science and technologies of National Science Center Kharkov Institute of Physics and Technology, Ukraine. 2008.
9. Gorokhov V. A., Pakhomov A. D., Pronin V. I., Tuzov Yu. V. Berilliy — material yadernoy i termoyadernoy tekhniki (Berillium as a material of nuclear and thermonuclear technique). XVIII Mezhdunarodnaya konferentsiya po fizike radiatsionnykh yavleniy i radiatsionnomu materialovedeniyu : sbornik trudov (XVIII International Conference on physics of radiation phenomenon and radiation science of materials : proceedings). OJSC “Institute of physical and technical problems”. Russia, 2008.
10. Kolbasnikov N. G., Andryushchenko A. S., Artemyev I. B. Osobennosti plasticheskoy deformatsii pri prokatke berillievoy folgi (Peculiarities of the plastic deformation with rolling of the beryllium foil). Izvestiya Akademii Nauk SSSR. Metally – Russian metallurgy. 1985. No. 3.
11. Papirov I. I., Nikolaenko A. A., Shkuropatenko V. A., Koshkarev G. S. Vestnik Kharkovskogo universiteta — Kharkiv University Magazine. No. 832. pp. 54–66.
12. A. A. Bochvar All-Russian Research Institute for Inorganic Materials (Federal State Unitary Enterprise). Available at : http://www.bochvar.ru/events/exhibitions/ntmex2007.
13. “Brush Wellman” official website. Available at : http://materion.com/Products/ProductGroups/Beryllium/BerylliumX-Ray.aspx
14. Kaskov V. S., Sigacheva L. R., Trusova T. A. Izuchenie okisleniya berilliya (Researchings of beryllium oxidation). Zashchita metallov — Protection of Metals. 1986. No. 5.
15. Fridlyandеr I. N., Kaskov V. S., Yatsenko K. P. Vliyanie defektov poverkhostnogo sloya na mekhanicheskie svoystva berilliya (Impact of the coating surface`s defects on mechanical beryllium properties). Aviatsionnaya promyshlennost — Aviation industry. 1988. No. 8.
16. Kaskov V. S., Zhirnov A. D., Pavlovskaya T. G., Molotova V. A., Babkina A. I., Aksenova M. A., Shtannikova Z. S. Antikorroziynaya zashchita berillievykh tormozov (Anticorrosive protection of beryllium brakes). Aviatsionnaya promyshlennost — Aviation industry. 1991. No. 1.
17. Fridlyander I. N., Senatorova O. G., Osintsev O. E. and et al. Mashinostroenie. Entsiklopediya. Tsvetnye metally i splavy. Kompozitsionnye metallicheskie materialy. Tom II, kn. 3 (Mechanical engineering. Book of reference. Non-ferrous metals and alloys. Composite metallic materials. Vol. II, book 3). Moscow : Mashinostroenie, 2001.

Language of full-text russian
Full content Buy
Back