| References |
1. Husveg R., Husveg T., Van Teeffelen N., Ottestad M., Hansen M. R. Improving separation of oil and water with a novel coalescing centrifugal pump. SPE Production & Operations. 2018. Vol. 33, Iss. 04. pp. 857–865. 2. Gradilenko N., Lomakin V. Overview of methods for optimizing the flow of the centrifugal pump. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 963. ID 012016. 3. Volkov A. V., Parygin A. G., Vikhliantsev A. A. et al. Analysis of domestic centrifugal pumps improvement opportunities for the oil and gas and chemical industry. Hydravlika. 2016. No. 2(2). pp. 1–13. 4. He D., Zhao L., Chang Z. et al. On the performance of a centrifugal pump under bubble inflow: Effect of gas-liquID distribution in the impeller. Journal of Petroleum Science and Engineering. 2021. Vol. 203. ID 108587. 5. Li W. Effects of viscosity of fluids on centrifugal pump performance and flow pattern in the impeller. International Journal of Heat and FluID Flow. 2000. Vol. 21, Iss. 2. pp. 207–212. 6. Ecopump.ru’2009. Efficiency and environmental friendliness of pumping equipment. international scientific and technical conference: Abstracts of reports. Moscow : MGTU im. N. E. Baumana, 2009. 55 p. 7. Development, manufacturing and operation turbo, pumping units ans based on systems. Proceedings of V International Conference SYPT’09. Voronezh : Nauchnaya kniga, 2009. 355 p. 8. Karan P., Himanshu V., Parmar A. A review on improvement of efficiency of centrifugal pump by altering design parameters. The 2nd International Conference on Current Research Trends in Engineering and Technology. 2018. Vol. 4, Iss. 5. pp. 606–611. 9. Jia X., Yu J., Li B., Zhang L., Zhu Z. Effect of incident angle of wear–ring clearance on pressure pulsation and vibration performance of centrifugal pump. Frontiers in Energy Research. 2022. Vol. 10. ID 861134. 10. Yüksel O., Köseolu B. Energy efficiency optimization on centrifugal pumps: A content analysis. 2016. Available at: https://www.researchgate.net/publication/311706614 (accessed: 28.07.2025). 11. Bekhtina N. B. Hydraulics and hydromechanical systems of air vehicles: A teaching aID for conducting practical classes and performing laboratory work. Moscow : ID Akademii Zhukovskogo, 2021 . 28 p. 12. Kuznetsov A. V., Panaiotti S. S., Savelyev A. I. Automated design of a multistage centrifugal pump. Tutorial. Kaluga, 2013. 170 p. 13. Borovin G. K., Petrov A. I., Protopopov A. A. The technique and the algorithm of the determination of the main design parameters of the low mass centrifugal pump. Keldysh Institute Preprints. 2016. Vol. 63. pp. 1–16. 14. Shah S. R., Jain S. V., Patel R. N., Lakhera V. J. CFD for centrifugal pumps: A review of the state-of-the-art. Procedia Engineering. 2013. Vol. 51. pp. 715–720. 15. Yu Z., Hu S., Zhang Y., Chen L. Optimization and analysis of centrifugal pump considering fluid-structure interaction. The Scientific World journal. 2014. Vol. 2014. ID 131802. 16. Cheah K. W., Lee T. S., Winoto S. H., Zhao Z. M. Numerical flow simulation in a centrifugal pump at design and off-design conditions. International Journal of Rotating Machinery. 2007. Vol. 2007. ID 83641. 17. Zhang H., Tang L., Zhao Y. Influence of blade profiles on plastic centrifugal pump performance. Advances in Materials Science and Engineering. 2020. Vol. 2020, Iss. 1. ID 6665520. 18. Al‐Obaidi A. R. Monitoring the performance of centrifugal pump under single-phase and cavitation condition: A CFD analysis of the number of impeller blades. Journal of Applied FluID Mechanics. 2019. Vol. 12, Iss. 2. pp. 445–459. 19. Wu C. Y., Pu K., Shi P. et al. Blade redesign based on secondary flow suppression to improve the dynamic performance of a centrifugal pump. Journal of Sound and Vibration. 2023. Vol. 554. ID 117689.
20. Zhang L., Wang X., Wu P., Huang B., Wu D. Optimization of a centrifugal pump to improve hydraulic efficiency and reduce hydro-induced vibration. Energy. 2023. Vol. 268. ID 126677. 21. Benturki M., Dizene R., Ghenaiet A. Multi-objective optimization of two-stage centrifugal pump using NSGA-II algorithm. Journal of Applied FluID Mechanics. 2018. Vol. 11, Iss. 4. pp. 929–943. 22. Subroto, Effendy M. Optimization of centrifugal pump performance with various blade number. AIP Conference Proceedings. 2019. Vol. 2114, Iss. 1. ID 020016. 23. Hawas M. N., Mohammed A. A., Al-Abbas A. H. Improving the efficiency and performance of centrifugal pump through model development and numerical analysis for the pump impeller. International Journal of Mechanical Engineering and Robotics Research. 2020. Vol. 9, No. 1. pp. 60–65. 24. Isametova M. E., Nussipali R. K., Kaldan G. U., Dzhasinbekov O. A., Akhmedov H. A. Automation of centrifugal pump impeller designing with modified vane grille. Vestnik KazNRTU. 2021. Vol. 143, No. 1. pp. 135–143. 25. Ivanov E. A., Zharkovsky A. A., Borshchev I. O. Increase of hydraulic efficiency and pulsation characteristics of multistage centrifugal pumps. St. Petersburg Polytechnic University Journal of Engineering Science and Technology. 2018. Vol. 24, No. 3. pp. 126–138. 26. Ageev Sh. R., Grigoryan E. E., Makienko G. P. Encyclopedic reference book of vane pumps for oil production and their application. Perm : Press-Master, 2007. 648 р. 27. Wang H., Bing L., Wang C., Chen H., Li L. Effects of the impeller blade with a slot structure on the centrifugal pump performance. Energies. 2020. Vol. 13, Iss. 7. ID 1628. 28. Hassan A. F. A., Abdalla H. M., Abou El-Azm Aly A. Effect of impeller blade slot on centrifugal pump performance. Global Journal of Research in Engineering. 2016. Vol. 16, Iss. 4. pp. 71–85. 29. Wei Y., Yang Y., Zhou L. et al. Influence of impeller gap drainage width on the performance of low specific speed centrifugal pump. Journal of Marine Science and Engineering. 2021. Vol. 9, Iss. 2. ID 106. 30. Liu H., Cheng Z., Ge Z., Dong L., Dai C. Collaborative improvement of efficiency and noise of bionic vane centrifugal pump based on multi-objective optimization. Advances in Mechanical Engineering. 2021. Vol. 13, Iss. 2. DOI: 10.1177/1687814021994976 31. Zhang H., Tang L., Zhao Y. Influence of blade profiles on plastic centrifugal pump performance. Advances in Materials Science and Engineering. 2020. Vol. 2020. ID 6665520. 32. Pei J., Yin T., Yuan S., Wang Y., Wang J. Cavitation optimization for a centrifugal pump impeller by using orthogonal design of experiment. Chinese Journal of Mechanical Engineering. 2017. Vol. 30(1). pp. 103–109. 33. Tan L., Zhu B., Cao S., Bing H., Wang Y. Influence of blade wrap angle on centrifugal pump performance by numerical and experimental study. Chinese Journal of Mechanical Engineering. 2014. Vol. 27(1). pp. 171–177. 34. Vihryantsev A. A. Improving the performance characteristics of pumping equipment operating in heat and water supply systems. Molodezhnyi nauchno-technicheskiy vestnik. 2016. No. 9. 24 p. 35. Volkov A. V., Parygin A. G., Lukin M. V. et al. Analysis of the effect of hydrophobic properties of surfaces in the flow part of centrifugal pumps on their operational performance. Thermal Engineering. 2015. Vol. 62, No. 11. pp. 817–824. 36. Novikova A. D., Nguen Suan Hung, Kozlovskaya A. P. Increasing the service life of fast-wearing elements of pumping equipment. MIAB. 2024. No. 3 (8). pp. 3–12. 37. Zotov V. V., Mnatsakanyan V. U., Bazlin M. M., Lakshinsky V. S., Dyatlova E. V. Extending the service life of centrifugal dewatering pump impellers in mines. Mining Industry Journal. 2024. No. 2 (174). pp. 143–147. |