Journals →  Obogashchenie Rud →  2025 →  #6 →  Back

TECHNOLOGICAL MINERALOGY
ArticleName Study of the enrichment of glauconite from the Kainarbulak deposit
DOI 10.17580/or.2025.06.07
ArticleAuthor Kurbaniyazov S. K., Khamidullayev B. N., Zhumagaziev A. Z., Normurodov A. A.
ArticleAuthorData

Khoja Akhmet Yassawi International Kazakh-Turkish University (Turkestan, Republic of Kazakhstan)

Kurbaniyazov S. K., Head of Department, Candidate of Geological and Mineralogical Sciences

 

Institute of Mineral Resources (Tashkent, Republic of Uzbekistan)
Khamidullayev B. N., Head of Department, PhD in Engineering Sciences
Normurodov A. A., Head of Laboratory, PhD in Engineering Sciences, azizbek19922304@mail.ru

Kh. Dosmukhamedov Atyrau University (Atyrau, Republic of Kazakhstan)

Zhumagaziev A. Z., Senior Lecturer

Abstract

This work presents the results of material composition analysis of a process sample of glauconite ore from the Kainarbulak deposit, using chemical, mineralogical, and granulometric methods. Based on the sample’s material composition and a review of relevant literature, enrichment methods were selected according to the physical properties of minerals and their aggregates, including size classification, and electromagnetic separation. Experimental studies were conducted in the chemical and technological laboratories of the Institute of Mineral Resources, University of Geological Sciences, Republic of Uzbekistan. Comprehensive chemical analysis of the composite sample determined the following major components (wt.%): SiO2 — 46.82, Al2O3 — 6.5, Fe2O3 — 25.49, P2O5 — 0.17, CaO — 0.98, K2O — 5.91, Na2O — 0.37. Grain size distribution analysis of the ore sample, crushed to size fractions of 0.315, –0.315+0.25, –0.25+0.1, and –0.1 mm, showed an increase in glauconite content in the finer fractions, reaching 77.3–78.9 % by weight. Dry electromagnetic separation (current strength: 4 A) yielded magnetic and non-magnetic fractions of 18.6 % and 81.4 %, respectively. The recovery of glauconite was 78.3 %. Laboratory tests produced a concentrate with a glauconite content of 81.1 % and a recovery of 78.3 %, meeting the quality requirements of TU 2164-003-45670985-05 and TU 2164-001-91350088-2011. These results confirm the practical applicability of the concentrate as an effective sorbent for water and petroleum product purification, a mineral fertilizer for agricultural technologies, and a component in paints and varnishes.

keywords Glauconite ore, process sample, material composition, size classification, electromagnetic separation, magnetic and nonmagnetic fractions, recovery rate
References

1. Rusinov D. A. Sorption purification of glauconite from contaminated reservoirs with oil and petroleum products. Innovations in environmental management and environmental protection. Proc. of the I National scientific and practical conference with international participation. Saratov: KUBiK Publishing House, 2019. pp. 213–215.
2. Hamed M., Abdelhafez A. A. Application of glauconite mineral as alternative source of potassium in sandy soils.
Alexandria Science Exchange Journal. 2020. Vol. 41, Iss. 2. pp. 181–189.
3. Ke Nong, Si Chen, Zepeng Ren, Min Zeng. Analysis of glauconite research trends based on citespace knowledge graph. Minerals. 2024. Vol. 14, Iss. 12. DOI: 10.3390/min14121260
4. Blinova M. O., Voronina A. V. Kinetic study of cesium sorption from aqueous solutions by sorbents based
on aluminosilicates. Abstracts of the IV International youth scientific conference: Physics. Technologies. Innovation. Ekaterinburg: UrFU, 2017. pp. 83–84.
5. Makhsudova Z. I. Enrichment of pigment-containing mineral glauconite sandstones of the Changi deposit. Proc. of the RSC dedicated to the centenary of academician I. Khamrabaev. Navoi, 2020. pp. 156–159.
6. Adylov D. K. Methods of enrichment of glauconites from the Changi deposit for use as pigments. Collection of materials of the RSTC «Mahalliy homashyo va ikkilamchi resurslar asosidagi innovation technologylar». Urgench: UrSU, 2021. pp. 96–97.
7. TU-2164-003-45670985-05 Glauconite sorbent. Sorbent for radionuclides, pesticides, heavy metal salts, phenol, and petroleum products from soil and aquatic environments.
8. Novikova L. A., Khodosova N. A., Belchinskaya L. I., Roessner F., Bonetto A., Marcomini A. Surface basicity of alkali and saline treated glauconite. Uspekhi v Khimii i Khimicheskoy Tekhnologii. 2021. Vol. 35, Iss. 13. pp. 52–54.
9. Peregudov Yu. S., Gorbunova E. M., Rami M., Niftaliev S. I. Sorption properties of modified glauconite. Sorbtsionnye i Khromatograficheskie Protsessy. 2021. Vol. 21, No. 1. pp. 51–59.
10. Bochkarev A. K., Ermolova E. M., Kosilov V. I., et al. Use of feed additives Nabicat and glauconite in the diet of fattening pigs. Izvestiya Orenburgskogo Gosudarstvennogo Agrarnogo Universiteta. 2021. No. 5. pp. 238–241.
11. Mavlyanova Sh. Z. Medicinal properties of biologically active glauconite in patients with atopic dermatitis caused by endogenous intoxication. Cuestiones de Fisioterapia. 2025. Vol. 54, Iss. 2. pp. 1781–1787.
12. Shirale A. O., Meena B. P., Biswas A. K., et al. Characterization and K release pattern of glauconite in
contrasting soils of India. Journal of Soil Science and Plant Nutrition. 2023. Vol. 23, Iss. 3. pp. 4632–4646.
13. Aizharikova M. Sh., Shautenov M. R. Study of the enrichment of glauconite sands. Vestnik Nauki. 2025. Vol. 3, No. 4. pp. 1133–1138.
14. Asem O. M., El-Midany A. A., Abadir M. F., El-Mofty S. E. Exploring the behavior of quartz-lauconitephosphate flotation system. Mining, Metallurgy & Exploration. 2024. Vol. 41, Iss. 2. DOI: 10.1007/s42461-024-00973-9
15. Shekiladze A., Kavtelashvili O., Bagnashvili M., et al. Research on enrichment of the glauconite sands of the Shkmeri deposit. Mining Journal. 2024. No. 1. pp. 84–89.

Language of full-text russian
Full content Buy
Back