Journals →  Obogashchenie Rud →  2025 →  #6 →  Back

COMPLEX RAW MATERIAL UTILIZATION
ArticleName Study of the stability of titaniumcontaining sulfate solutions during synthetic ilmenite processing
DOI 10.17580/or.2025.06.06
ArticleAuthor Kuzin E. N.
ArticleAuthorData

D. I. Mendeleev Russian University of Chemical Technology (Moscow, Russia)

Kuzin E. N., Head of Chair, Doctor of Engineering Sciences, Associate Professor, kuzin.e.n@muctr.ru

Abstract

The processing of titanium minerals is a strategically important sector of modern industry. Aerospace, medical, and food industries are major consumers of titanium compounds, driving the need for increased efficiency in processing ilmenite, the primary feedstock for titanium dioxide production. Depending on the processing stage and the raw material, titanium oxysulfate solutions may contains ubstantial iron(II) sulfate impurities, which significantly affect both the production process and the quality of the final titanium dioxide product. This study investigated the stability of sulfuric acid solutions of titanium oxysulfate, including both pure solutions and process solutions obtained during ilmenite processing. Hydrolysis processes were examined using spectrophotometry and inductively coupled plasma atomic emission spectroscopy (ICP–AES). Particle size distribution was determined by dynamic light scattering. It was found that titanium-containing sulfate solutions exhibit significantly lower stability compared to hydrochloric acid solutions, even when the latter are contaminated with silicon tetrachloride. The rate of hydrolysis of titanium oxysulfate solutions decreases as their concentration increases, a phenomenon attributed to the high acidity and increased surface charge of the resulting meta- and orthotitanic acid nanoparticles. Furthermore, the presence of iron(II) sulfate impurities in titanium oxysulfate solutions was shown to inhibit the hydrolysis of titanium compounds, due to additional acidification of the medium and the high surface charge of iron hydroxide particles. These findings can be applied to the production of titanium dioxide via sulfuric acid processing of ilmenite, as well as to the processing of minerals such as pseudobrookite and arizonite for the development of advanced titanium-containing reagents.

keywords Titanium oxysulfate, synthetic ilmenite, sulfation, complex titanium-containing coagulants, stability
References

1. Aleksandrov A. V., Lednov S. V., Davydkina E. A. State of the affrains in the titanium industry and development prospects. Tekhnologiya Legkikh Splavov. 2021. No. 2. pp. 77–82.
2. Neto F. C., Giaretton M. V., Neves G. O., et al. An overview of highly porous titanium processed via metal injection molding in combination with the space holder method. Metals. 2022. Vol. 12. DOI: 10.3390/met12050783
3. Kaur M., Singh K. Review on titanium and titaniumbased alloys as biomaterials for orthopaedic applications. Materials Science and Engineering: C. 2019. Vol. 102. pp. 844–862. 

4. Sadykhov G. B., Anisonyan K. G., Zablotskaya Yu.V., et al. Features of titanium raw materials in Russia and prospects of its use for the production of titanium and its pigment dioxide. Metally. 2024. No. 3. pp. 3–20.
5. Sadykhov G. B. Fundamental problems and prospects for the use of titanium raw materials in Russia. Izvestiya Vysshikh Uchebnykh Zavedeniy. Chernaya Metallurgiya. 2020. Vol. 63, No. 3–4. pp. 178–194.
6. Nikolaev A. A., Nikolaev A. V., Kirpichev D. E. Separation of titanium and silicon oxides during plasma-arc melting of quartz-leucoxene concentrate. Inorganic Materials: Applied Research. 2022. Vol. 13. pp. 716–720.
7. Smorokov А. А., Kantaev А. S., Bryankin D. V., Miklashevich А. А. Development of a low-temperature desiliconization method for the leucoxene concentrate of the Yarega deposit with a solution of ammonium hydrogen fluoride. Izvestiya Vysshikh Uchebnykh Zavedeniy. Khimiya i Khimicheskaya Tekhnologiya. 2022. Vol. 65, Iss. 2. pp. 127–133.
8. El Khalloufi M., Drevelle O., Soucy G. Titanium: An overview of resources and production methods. Minerals. 2021. Vol. 11. DOI: 10.3390/min11121425
9. Garmata V. A., Petrun′ko A. N., Galitsky N. V. Titan. Properties, raw material base, physico-chemical bases and production methods. Moscow: Metallurgiya, 1983. 559 p.
10. Dyachenko A. N., Dyachenko E. N., Kraidenko R. I. Titanium dioxide: Market, production, new technologies. Lakokrasochnye Materialy i Ikh Primenenie. 2021. No. 7–8. pp. 41–50.
11. Zanaveskin K. L., Maslennikov A. N., Zanaveskina S. M., Vlasenko V. I. Reaction ability of titaniumbearing raw materials during the titanium tetrachloride obtaining. Tsvetnye Metally. 2017. No. 4. pp. 47–53.
12. Zanaveskin K. L., Zanaveskina S. M., Maslennikov A. N. Activation of quartz-leucoxene concentrate for processing into titanium tetrachloride. Russian Journal of Applied Chemistry. 2016. Vol. 89, No. 11. pp. 1733–1739.
13. Armaković S. J., Savanović M. M., Armaković S. Titanium dioxide as the most used photocatalyst for water purification: An overview. Catalysts. 2023. Vol. 13, No. 26. DOI: 10.3390/catal13010026
14. Abdelgalil M. S., El-Barawy K., Ge Y., Xia L. The recovery of TiO2 from ilmenite ore by ammonium sulfate roasting–leaching process. Processes. 2023. Vol. 11. DOI: 10.3390/pr11092570
15. Dubenko A. V., Nikolenko M. V., Kostyniuk A., Likozar B. Sulfuric acid leaching of altered ilmenite using thermal, mechanical and chemical activation. Minerals. 2020. Vol. 10. DOI: 10.3390/min10060538
16. Luchinsky G. P. Chemistry of titanium. Moscow: Khimiya, 1971. 471 p.
17. Khazin L. G. Titanium dioxide. Leningrad: Khimiya, 1970. 176 p.
18. Nikolenko N. V., Dubenko A. V., Vashkevich E. Yu., Dmitrikova L. V. Temperature optimum of the process of the dissolution of altered ilmenite in sulfuric acid. Voprosy Khimii i Khimicheskoy Tekhnologii. 2018. No. 3. pp. 70–78.
19. Fedorov S. A., Udoeva L. Yu., Vusikhis A. S., Pikulin K. V., Cherepanova L. A. Joint processing of perovskite and ilmenite concentrates. Part 1. Chemical-mineralogical (material) characteristics of perovskite and ilmenite concentrates. Izvestiya Vysshikh Uchebnykh Zavedeniy. Chernaya Metallurgiya. 2024. Vol. 67, No. 1. pp. 27–36.
20. Kuzin E. N., Kruchinina N. E., Fadeev A. B., Nosova T. I. Principles of pyro-hydrometallurgical processing of quartz-leucoxene concentrate with the formation of a pseudobrukite phase. Obogashchenie Rud. 2021. No. 3. pp. 33–38.
21. Thomas M., Bąk J., Królikowska J. Efficiency of titanium salts as alternative coagulants in water and wastewater treatment: Short review. Desalination and Water Treatment. 2020. Vol. 208. pp. 261–272.
22. Gan Y., Li J., Zhang L., Wu B., Huang W., Li H., Zhang S. Potential of titanium coagulants for water and wastewater treatment: Current status and future perspectives. Chemical Engineering Journal. 2020. Vol. 406. DOI: 10.1016/j.cej.2020.126837
23. Kuzin E. Synthesis and use of complex titanium-containing coagulant in water purification processes. Inorganics. 2025. Vol. 13, Iss. 1. DOI: 10.3390/inorganics13010009
24. Kuzin E. N., Kruchinina N. E., Chernyshev P. I., Vizen N. S. Synthesis of titanium trichloride. Inorganic Materials. 2020. Vol. 56, No. 5. pp. 507–511.
25. Shabanova N. A., Popov V. V., Sarkisov P. D. Chemistry and technology of nanodisperse oxides. Moscow: Akademkniga, 2007. 309 p.
26. Shon H., Vigneswaran S., Kandasamy J., Zareie M., Kim J., Cho D., Kim J. H. Preparation and characterization of titanium dioxide (TiO2) from sludge produced by TiCl4 flocculation with FeCl3, Al2(SO4)3 and Ca(OH)2 coagulantaids in wastewater. Separation Science and Technology. 2009. Vol. 44. pp. 1525–1543.
27. Wang T.-H., Navarrete-López A.M., Li Sh., Dixon D. A., Gole J. L. Hydrolysis of TiCl4: Initial steps in the production of TiO2. The Journal of Physical Chemistry A. 2010. Vol. 114, Iss. 28. pp. 7561–7570.
28. Shchelokova E. A., Kopkova E. K., Gromov P. B. Production of titanium dioxide in sulphuric acid decomposition of mechanically activated ilmenite concentrate. Trudy Kolskogo Nauchnogo Tsentra RAN. 2018. No. 2–1. pp. 203–207.

Language of full-text russian
Full content Buy
Back