Journals →  Obogashchenie Rud →  2025 →  #6 →  Back

ANALYTICAL METHODS IN BENEFICIATION PROCESSES
ArticleName Determination of the maximum grain size of valuable minerals in ore
DOI 10.17580/or.2025.06.05
ArticleAuthor Kozin V. Z., Komlev A. S.
ArticleAuthorData

Ural State Mining University (Ekaterinburg, Russia)
Kozin V. Z., Dean, Doctor of Engineering Sciences, Professor, gmf.dek@ursmu.ru
Komlev A. S., Senior Researcher, Doctor of Engineering Sciences, tails2002@inbox.ru

Abstract

The maximum grain size of valuable minerals is a key parameter in ore characterization, frequently cited in technological regulations and mineral processing literature. This value is typically established through mineralogical analysis of narrow size fractions, with the largest grain observed in the sample taken as the maximum. Theoretically, it is impossible to detect the largest grain present in the ore using a sample; instead, attention should be given to the proportion of large grains contained in the ore. Practical determination of the proportion of liberated grains depending on sample size showed that, for the same ore, larger grains are found in concentrate samples than in ore samples, and larger grains are found in ore samples than in tailings samples. To reliably determine maximum grain sizes, ore samples should be enriched so that the concentrate contains 0.1–1 % valuable minerals by mass. Examination of 10,000 to 100,000 grains is recommended, with the three largest liberated grains identified. Analysis of the relationship between mineral liberation and grain size reveals that the observed maximum grain size decreases as the mass fraction of valuable minerals and the sample mass decrease. For mineralogical analysis of a sample containing 500 grains, the lower detection limit corresponds to a valuable mineral mass fraction of 0.6 %. For operational plants, the maximum grain size of valuable minerals should be determined using concentrate samples from the largest available size class, with an assessment of 10,000 to 100,000 concentrate particles.

The study was supported by the Ministry of Science and Higher Education of the Russian Federation in accordance with state assignment for the Ural State Mining University No. 0833-2023-0004.

keywords Ore texture, maximum grain size, grain size distribution asymmetry, detection probability, sample mass requirements, grain liberation, average size of large grains, sample enrichment
References

1. Ostapenko P. E., Ostapenko S. P. Evaluation of the quality of mineral raw materials. Moscow: Nedra, 2002. 157 p.
2. Mamonov S. V., Volkova S. V., Goraichuk P. K., Dresviankina T. P., Sinkov I. S. Peculiarities of material composition of copper-zinc ores of deep horizons of the Tarnier deposit. Izvestiya Vuzov. Gornyi Zhurnal. 2024. No. 3. pp. 71–81.
3. Pankin A. V., Makavetskas A. R., Shekhirev D. V. An automated mineralogical analysis for beneficiation processes. Obogashchenie Rud. 2013. No. 1. pp. 40–43.
4. Shabanova E. V., Vasilyeva I. E., Busko A. E., Kunaev A. B. Estimation of Au- and Ag- particle sizes in geological samples using high time-resolved scintillation atomic emission analysis. Analitika i Kontrol'. 2010. Vol. 14, No. 4. pp. 186–200.
5. Kotova O. B., Ozhogina E. G. Integration of modern methods of mineralogical analysis of refractory ores and mining waste. Proc. of the International conference «Modern problems of complex and deep processing of natural and non–traditional mineral raw materials (Plaksin Readings – 2023)». pp. 49–52.
6. Shemetov P. A. Controlling the quality of the ore flow under the cyclic-flow technology of complex structure deposits development. Gornyi Zhurnal. 2002. Spec. Iss. pp. 80–83.
7. Gazaleeva G. I. Methods of improving the quality of asbestos. Ekaterinburg: USMU Publishing House, 2005. 152 p.
8. Stupakova E. V. Analysis and optimization of sample preparation schemes. Izvestiya Vuzov. Gornyi Zhurnal. 2023. No. 6. pp. 60–67.
9. Dominy S. C., Platten J. M., Glass H. J.. Purevgerel S., Cuffley B. W. Determination of gold particle characteristics for sampling protocol optimization. Minerals. 2021. Vol. 11, Iss. 10. DOI: 10.3390/min 11101109
10. Stupakova E. V. Comparative analysis of coefficients of formulas for calculating the fundamental error of testing. Proc. of the XXVIII International scientific and technical conference «Scientific foundations and practice of processing ores and man-made raw materials». Ekaterinburg: FortDialog Printing House, 2023. pp. 93–97.
11. Svensmark B. Extensions to the theory of sampling l. The extended Gy’s formula, the segregation paradox and fundamental sampling uncertainty (FSU). Analytica Chimica Acta. 2021. Vol 1187. DOI: 10.1016/j.aca2021.339127
12. Jean-Sebastian D., Esbensen K. H. Revisiting Pierre Gy’s formula (TOS) — A return to size-density classes for applications to contaminated soils, coated particular aggregated and mixed material systems. Analitica Chimica Acta. 2022. Vol.1193. DOI: 10.1016/j.aca2022.339227
13. Kozin V. Z. Study of ores dressability. Ekaterinburg: USMU Publishing House, 2020. 196 p.
14. Kozin V. Z. Testing of mineral raw materials at processing plants. Ekaterinburg: USMU Publishing House, 2021. 202 p.
15. Kuptsova A. V., Mezentseva O. P., Khramov A. N. Application of mineralogical-analytical methods of definition of mineral exposure parameters. Gornyi Zhurnal. 2014. No. 11. pp. 35–39.
16. Lepilova I. V. Applicability of the requirements of GOST 14180-80 when sampling large-scale products on conveyor belts. Proc. of the XXIX International scientific and technical conference «Scientific foundations and practice of processing ores and man-made raw materials». Ekaterinburg: FortDialog Printing House, 2024. pp. 106–112.
17. Kibirev V. I. Tailings storage. St. Petersburg: Mekhanobr Engineering, 2022. 312 p.
18. Napier-Munn T. J., Whiten W. J., Faramarzi F. Bias in manual sampling of rock particles. Minerals Engineering. 2020. Vol. 153. DOI: 10.1016/j.mineng.2020.106260
19. Yudin E. V. Sapunov R. V. Closing the metal balance according to X-ray spectral analysis. Proc. of the XXVIII International scientific and technical conference «Scientific foundations and practice of processing ores and man-made raw materials». Ekaterinburg: FortDialog Printing House, 2023. pp. 398–402.
20. Sona M., Dube J.-S. Sampling particulate matter for analysis – Controlling uncertainty and bias using the theory of sampling. Analytica Chimica Acta. 2021. Vol. 1185. DOI: 10.1016/j.aca.2021.338982

Language of full-text russian
Full content Buy
Back