Journals →  Obogashchenie Rud →  2025 →  #6 →  Back

ORE PREPARATION
ArticleName Modification of strength properties of copper ore as a factor in improving the efficiency of ore preparation processes
DOI 10.17580/or.2025.06.01
ArticleAuthor Kallaev I. T., Nikolaeva N. V., Kukhtina A. A., Kukhtina P. A.
ArticleAuthorData

Empress Catherine II Saint Petersburg Mining University (Saint Petersburg, Russia)

Kallaev I. T., Postgraduate Student, kallaev1996@mail.ru
Nikolaeva N. V., Associate Professor, Candidate of Engineering Sciences, Associate Professor, Nikolaeva_NV@pers.spmi.ru
Kukhtina A. A., Student, arisha362@mail.ru
Kukhtina P. A., Student, pkuhtina@gmail.com

Abstract

The ongoing decline in the quality of mineral resources for nonferrous and precious metals necessitates the development of energyefficient comminution technologies. One promising approach to intensifying comminution involves the application of physical and chemical treatments aimed at the targeted modification of the strength properties of mineral raw materials. This study investigates the effect of ultrasonic pretreatment on the grinding efficiency of copper ore. It has been established that ultrasonic treatment in an aqueous medium for 15 minutes at a frequency of 35 kHz leads to a significant modification of ore strength characteristics. In particular, the Bond ball mill work index (BWi) decreased by 10.4 %, from 20.08 to 17.99 kW·h/t, corresponding to a transition of the ore from the «very hard» to the «hard» category. The observed reduction in ore strength is attributed to the destructive effect of ultrasonic vibrations on both mineral aggregates and individual mineral grains, resulting from the initiation and propagation of microcracks and structural defects. This structural weakening enhances grindability and facilitates subsequent size reduction, thereby lowering energy demand. Calculations of the total specific energy consumption of the comminution cycle were performed for untreated ore and ore subjected to ultrasonic pretreatment. The results indicate a 3.7 % reduction in specific energy consumption during grinding, from 25.62 to 24.67 kW·h/t, when ultrasonic pretreatment is applied. The proposed approach to modifying ore strength properties can be integrated into existing ore processing flowsheets without the need for substantial changes to current production infrastructure.

This research was conducted within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation, «Study of Earth’s Thermodynamic Processes Related to Deep Hydrocarbon Formation» (FSRW-2024-0008).

keywords Comminution, copper ores, modification, ultrasonic pretreatment, strength properties, Bond ball mill work index
References

1. Pashkevich N. V., Khloponina V. S., Pozdnyakov N. A., Avericheva A. A. Analysis of the problems of reproduction of the mineral resource base of scarce strategic minerals. Zapiski Gornogo Instituta. 2024. Vol. 270. pp. 1004–1023.
2. Litvinenko V. S., Petrov E. I., Vasilevskaya D. V., Yakovenko A. V., Naumov I. A., Ratnikov M. A. Assessment of the role of the state in the management of mineral resources. Zapiski Gornogo Instituta. 2023. Vol. 259. pp. 95–111.
3. Yakovleva T. A., Romashev A. O., Mashevsky G. N. Enhancing flotation beneficiation efficiency of complex ores using ionometry methods. Gornye Nauki i Tekhnologii. 2024. Vol. 9, No. 2. pp.146–157.
4. Litvinenko V. S. Digital economy as a factor in the technological development of the mineral sector. Natural Resources Research. 2020. Vol. 29. pp. 1521–1541.
5. Chanturiya V. A. Scientific substantiation and development of innovative processes for the extraction of zirconium and rare earth elements in the deep and comprehensive treatment of eudialyte concentrate. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 505–516.
6. Vinogradov Yu. I., Khokhlov S. V., Zigangirov R. R. Energy-based concept for calculating explosive weight in open pit mining given variable physical and mechanical properties of rocks. Gornyi Informatsionno-analiticheskiy Byulleten'. 2024. No. 6. pp. 50–68.
7. Lusty P. A. J., Gunn A. G. Challenges to global mineral resource security and options for future supply. Geological Society, London, Special Publications. 2014. Vol. 393, Iss. 1. pp. 265–276.
8. Khopunov E. A. Role of mineral structure and strength characteristics in ores disintegration and liberation. Obogashchenie Rud. 2011. No. 1. pp. 25–31.
9. Koteleva N., Khokhlov S., Frenkel I. Digitalization in open-pit mining: A new approach in monitoring and control of rock fragmentation. Applied Sciences. 2021. Vol. 11, Iss. 22. DOI: 10.3390/app112210848
10. Chitalov L. S., Lvov V. V. Comparative assessment of the bond ball mill work index tests. Gornyi Informatsionno-analiticheskiy Byulleten'. 2021. No. 1. pp. 130–145.
11. Murali G., Wong L. S., Abid S. R. A comprehensive review of drop weight impact testing: Evaluating the pros and cons in fiber-reinforced concrete performance assessment. Journal of Building Engineering. 2024. Vol. 94. DOI: 10.1016/j.jobe.2024.109934
12. Efimov D. A., Gospodarikov A. P. Technical and technological aspects of the use of rolls with a profile in the shape of a Relo triangle in crushing units at ore preparation processing. Gornyi Informatsionno-analiticheskiy Byulleten'. 2022. No. 10–2. pp. 117–126.
13. Vahid Soltan Mohammadi, Mohammad Noaparast, Soheila Aslani. The effect of high voltage electrical pulses on iron ore comminution to improve desulfurization flotation recovery. Physicochemical Problems of Mineral Processing. 2022. Vol. 58, Iss. 4. DOI: 10.37190/PPMP/150264
14. Aleksandrova T. N., Aburova V. A., Nikolaeva N. V., Struk G. V. The influence of energy exposure on the strength characteristics of gold-bearing ore. Obogashchenie Rud. 2025. No. 3. pp. 3–8.
15. Chanturia V. A., Bunin I. Z., Ryazantseva M. V. The low-temperature plasma effect of dielectric barrier discharge on physicochemical and process properties of natural iron sulfides. Journal of Mining Science. 2023. Vol. 59, Iss. 4. pp. 621–627.
16. Batchelor A. R., Jones D. A., Plint S., Kingman S. W. Increasing the grind size for effective liberation and flotation of a porphyry copper ore by microwave treatment. Minerals Engineering. 2016. Vol. 94. pp. 61–75.
17. Razmakhnin K. K., Khatkova A. N., Shumilova L. V. Increasing the quality of zeolite-bearing rocks from Eastern Transbaikalia by applying directed energy. Zapiski Gornogo Instituta. 2024. Vol. 265. pp. 129–139.
18. Kondratiev S. A., Rostovtsev V. I., Kovalenko K. A. Ecology-friendly technologies for integrated processing of rebellious ore and process waste. Gornyi Zhurnal. 2020. No. 5. pp. 39–46.
19. Bochkarev G. R., Rostovtsev V. I. Energy deposition in processing of mineral raw materials. Fundamentalnye i Prikladnye Voprosy Gornykh Nauk. 2014. Vol. 1, No. 2. pp. 199–206.

20. Adewuyi S. O., Ahmed H. A. M., Ahmed H. M. A. Methods of ore pretreatment for comminution energy reduction. Minerals. 2020. Vol. 10, Iss. 5. DOI: 10.3390/min10050423
21. Wikedzi A., Saquran S., Leißner T., Peuker U. A., Mütze T. Breakage characterization of gold ore components. Minerals Engineering. 2020. Vol. 151. DOI: 10.1016/j.mineng.2020.106314
22. Tsvetkov P. S. Cluster approach for industrial CO2 capture and transport: savings via shared infrastructure. Zapiski Gornogo Instituta. 2025. Vol. 275. pp. 110–129.
23. Vaisberg L. A., Zarogatsky L. P., Safronov A. N. Disintegration of kimberlite ores ensuring the safety of diamond crystals. Obogashchenie Rud. 2003. No. 3. pp. 16–20.
24. Revnivtsev V. I., Gaponov G. V., Zarogatsky L. P. Selective destruction of minerals. Moscow: Nedra, 1988. 430 p.
25. Chanturiya V. A., Bunin I. Z. Advances in pulsed power mineral processing technologies. Minerals. 2022. Vol. 12, Iss. 9. DOI: 10.3390/min12091177
26. Aleksandrova Т. N., Afanasova A. V., Aburova V. A. «Invisible» noble metals in carbonaceous rocks and beneficiation products: feasibility of detection and coarsening. Gornye Nauki i Tekhnologii. 2024. Vol. 9, No. 3. pp. 231–242.
27. Fernandes I. B., Rudolph M., Hassanzadeh A., Bachmann K., Meskers C., Peuker U., Reuter M. A. The quantification of entropy for multicomponent systems: Application to microwave-assisted comminution. Minerals Engineering. 2021. Vol. 170. DOI: 10.1016/j.mineng.2021.107016
28. Parker T., Shi F., Evans C., Powell M. The effects of electrical comminution on the mineral liberation and surface chemistry of a porphyry copper ore. Minerals Engineering. 2015. Vol. 82. pp. 101–106.
29. Aleksandrova T. N., Kuznetsov V. V., Prokhorova E. O. Investigation of interfacial characteristics as a key aspect of the justification of the reagent regime for coal flotation. Minerals. 2025. Vol. 15, Iss. 1. DOI: 10.3390/min15010076
30. Aleksandrova T. N., Lushina E. A. Influence of an ionic composition of a sludge liquid phase on technological parameters of beneficiation. Tsvetnye Metally. 2024. No. 8. pp. 13–20.
31. Morrell S. The Morrell method to determine the efficiency of industrial grinding circuits. Industrial comminution efficiency. 2021. URL: https://gmggroup.org/wp-content/uploads/2024/07/GUIDELINE_The-Morrell-Method-to-Determine-the-Efficiency-of-Industrial-Grinding-Circuits_2021-1.pdf (accessed: 08.07.2025).
32. Kallaev I. T., Kukhtina A. A., Kukhtina P. A., Nikolaeva N. V. Impact of ultrasound on grindability of coppermolybdenum ores. Uspekhi Sovremennogo Estestvoznaniya. 2024. No. 5. pp. 90–97.
33. Agranat B. A., Dubrovin M. N., Khavskiy N. N., et al. Fundamentals of physics and ultrasound technology. Moscow: Vysshaya Shkola, 1987. 352 p.
34. Baranov V. F., Sataev I. Sh. Upon the world practice in ore-preparation of porphyry copper ores. Obogashchenie Rud. 2011. No. 2. pp. 3–9.
35. Baranov V. F. Designs of new operating copper processing plants: process types, equipment selection, industry trends. Obogashchenie Rud. 2021. No. 1. pp. 44–52.
36. Baranov V. F. The use of foreign experience in the development of a reconstruction option for the Zhezkazgan concentration complex. Obogashchenie Rud. 2020. No. 1. pp. 54–59.

Language of full-text russian
Full content Buy
Back