Journals →  Обогащение руд →  2025 →  #6 →  Back

КОМПЛЕКСНОЕ ИСПОЛЬЗОВАНИЕ СЫРЬЯ
ArticleName Исследование стабильности сернокислых титансодержащих растворов процесса переработки синтетического ильменита
DOI 10.17580/or.2025.06.06
ArticleAuthor Кузин Е. Н.
ArticleAuthorData

Российский химико-технологический университет им. Д. И. Менделеева, Москва, РФ

Кузин Е. Н., зав. кафедрой, д-р техн. наук, доцент, kuzin.e.n@muctr.ru

Abstract

Исследована стабильность индивидуальных сернокислых растворов оксисульфата титана, а также технологических растворов, полученных при вскрытии ильменита. Установлено, что по данному показателю они значительно уступают солянокислым, даже при условии загрязненности последних примесью тетрахлорида кремния. Доказано, что гидролиз растворов, содержащих оксисульфат титана, замедляется по мере увеличения концентрации, а наличие примеси сульфата железа (II) оказывает ингибирующее действие на процесс из-за повышенного дополнительного подкисления среды и высокого поверхностного заряда гидроксидов железа. Полученные результаты могут быть использованы как в процессах производства диоксида титана по сернокислотной технологии переработки ильменита, так и для переработки минералов типа псевдобрукита или аризонита с получением инновационных комплексных титансодержащих реагентов.,

Автор выражает благодарность научному консультанту, д-ру техн. наук, профессору Кручининой Наталии Евгеньевне.

keywords Оксисульфат титана, синтетический ильменит, сульфатизация, комплексные титансодержащие коагулянты, стабильность
References

1. Aleksandrov A. V., Lednov S. V., Davydkina E. A. State of the affrains in the titanium industry and development prospects. Tekhnologiya Legkikh Splavov. 2021. No. 2. pp. 77–82.
2. Neto F. C., Giaretton M. V., Neves G. O., et al. An overview of highly porous titanium processed via metal injection molding in combination with the space holder method. Metals. 2022. Vol. 12. DOI: 10.3390/met12050783
3. Kaur M., Singh K. Review on titanium and titaniumbased alloys as biomaterials for orthopaedic applications. Materials Science and Engineering: C. 2019. Vol. 102. pp. 844–862. 

4. Sadykhov G. B., Anisonyan K. G., Zablotskaya Yu.V., et al. Features of titanium raw materials in Russia and prospects of its use for the production of titanium and its pigment dioxide. Metally. 2024. No. 3. pp. 3–20.
5. Sadykhov G. B. Fundamental problems and prospects for the use of titanium raw materials in Russia. Izvestiya Vysshikh Uchebnykh Zavedeniy. Chernaya Metallurgiya. 2020. Vol. 63, No. 3–4. pp. 178–194.
6. Nikolaev A. A., Nikolaev A. V., Kirpichev D. E. Separation of titanium and silicon oxides during plasma-arc melting of quartz-leucoxene concentrate. Inorganic Materials: Applied Research. 2022. Vol. 13. pp. 716–720.
7. Smorokov А. А., Kantaev А. S., Bryankin D. V., Miklashevich А. А. Development of a low-temperature desiliconization method for the leucoxene concentrate of the Yarega deposit with a solution of ammonium hydrogen fluoride. Izvestiya Vysshikh Uchebnykh Zavedeniy. Khimiya i Khimicheskaya Tekhnologiya. 2022. Vol. 65, Iss. 2. pp. 127–133.
8. El Khalloufi M., Drevelle O., Soucy G. Titanium: An overview of resources and production methods. Minerals. 2021. Vol. 11. DOI: 10.3390/min11121425
9. Garmata V. A., Petrun′ko A. N., Galitsky N. V. Titan. Properties, raw material base, physico-chemical bases and production methods. Moscow: Metallurgiya, 1983. 559 p.
10. Dyachenko A. N., Dyachenko E. N., Kraidenko R. I. Titanium dioxide: Market, production, new technologies. Lakokrasochnye Materialy i Ikh Primenenie. 2021. No. 7–8. pp. 41–50.
11. Zanaveskin K. L., Maslennikov A. N., Zanaveskina S. M., Vlasenko V. I. Reaction ability of titaniumbearing raw materials during the titanium tetrachloride obtaining. Tsvetnye Metally. 2017. No. 4. pp. 47–53.
12. Zanaveskin K. L., Zanaveskina S. M., Maslennikov A. N. Activation of quartz-leucoxene concentrate for processing into titanium tetrachloride. Russian Journal of Applied Chemistry. 2016. Vol. 89, No. 11. pp. 1733–1739.
13. Armaković S. J., Savanović M. M., Armaković S. Titanium dioxide as the most used photocatalyst for water purification: An overview. Catalysts. 2023. Vol. 13, No. 26. DOI: 10.3390/catal13010026
14. Abdelgalil M. S., El-Barawy K., Ge Y., Xia L. The recovery of TiO2 from ilmenite ore by ammonium sulfate roasting–leaching process. Processes. 2023. Vol. 11. DOI: 10.3390/pr11092570
15. Dubenko A. V., Nikolenko M. V., Kostyniuk A., Likozar B. Sulfuric acid leaching of altered ilmenite using thermal, mechanical and chemical activation. Minerals. 2020. Vol. 10. DOI: 10.3390/min10060538
16. Luchinsky G. P. Chemistry of titanium. Moscow: Khimiya, 1971. 471 p.
17. Khazin L. G. Titanium dioxide. Leningrad: Khimiya, 1970. 176 p.
18. Nikolenko N. V., Dubenko A. V., Vashkevich E. Yu., Dmitrikova L. V. Temperature optimum of the process of the dissolution of altered ilmenite in sulfuric acid. Voprosy Khimii i Khimicheskoy Tekhnologii. 2018. No. 3. pp. 70–78.
19. Fedorov S. A., Udoeva L. Yu., Vusikhis A. S., Pikulin K. V., Cherepanova L. A. Joint processing of perovskite and ilmenite concentrates. Part 1. Chemical-mineralogical (material) characteristics of perovskite and ilmenite concentrates. Izvestiya Vysshikh Uchebnykh Zavedeniy. Chernaya Metallurgiya. 2024. Vol. 67, No. 1. pp. 27–36.
20. Kuzin E. N., Kruchinina N. E., Fadeev A. B., Nosova T. I. Principles of pyro-hydrometallurgical processing of quartz-leucoxene concentrate with the formation of a pseudobrukite phase. Obogashchenie Rud. 2021. No. 3. pp. 33–38.
21. Thomas M., Bąk J., Królikowska J. Efficiency of titanium salts as alternative coagulants in water and wastewater treatment: Short review. Desalination and Water Treatment. 2020. Vol. 208. pp. 261–272.
22. Gan Y., Li J., Zhang L., Wu B., Huang W., Li H., Zhang S. Potential of titanium coagulants for water and wastewater treatment: Current status and future perspectives. Chemical Engineering Journal. 2020. Vol. 406. DOI: 10.1016/j.cej.2020.126837
23. Kuzin E. Synthesis and use of complex titanium-containing coagulant in water purification processes. Inorganics. 2025. Vol. 13, Iss. 1. DOI: 10.3390/inorganics13010009
24. Kuzin E. N., Kruchinina N. E., Chernyshev P. I., Vizen N. S. Synthesis of titanium trichloride. Inorganic Materials. 2020. Vol. 56, No. 5. pp. 507–511.
25. Shabanova N. A., Popov V. V., Sarkisov P. D. Chemistry and technology of nanodisperse oxides. Moscow: Akademkniga, 2007. 309 p.
26. Shon H., Vigneswaran S., Kandasamy J., Zareie M., Kim J., Cho D., Kim J. H. Preparation and characterization of titanium dioxide (TiO2) from sludge produced by TiCl4 flocculation with FeCl3, Al2(SO4)3 and Ca(OH)2 coagulantaids in wastewater. Separation Science and Technology. 2009. Vol. 44. pp. 1525–1543.
27. Wang T.-H., Navarrete-López A.M., Li Sh., Dixon D. A., Gole J. L. Hydrolysis of TiCl4: Initial steps in the production of TiO2. The Journal of Physical Chemistry A. 2010. Vol. 114, Iss. 28. pp. 7561–7570.
28. Shchelokova E. A., Kopkova E. K., Gromov P. B. Production of titanium dioxide in sulphuric acid decomposition of mechanically activated ilmenite concentrate. Trudy Kolskogo Nauchnogo Tsentra RAN. 2018. No. 2–1. pp. 203–207.

Language of full-text russian
Full content Buy
Back