Journals →  CIS Iron and Steel Review →  2025 →  #2 →  Back

Metal Science and Metal Physics
ArticleName Influence of laser exposure on the processes occurring in a surface layer of austenitic steel products
DOI 10.17580/cisisr.2025.02.09
ArticleAuthor S. A. Vologzhanina, R. M. Khuznakhmetov, J. V. Amyaga, E. Yu. Zhdanova, A. Ramos- Velazkuez
ArticleAuthorData

Empress Catherine II Saint Petersburg Mining University (St. Petersburg, Russia)

S. A. Vologzhanina, Dr. Eng., Prof., Dept. of Materials Science and Technology of Art Products, e-mail: vologzhanina_sa@pers.spmi.ru
R. M. Khuznakhmetov, Post-graduate Student, Dept. of Materials Science and Technology of Art Products, e-mail: ruslan.rh44@gmail.com

 

IPG Laser GmbH & Co. KG (Burbach, Germany)
J. V. Amyaga, Production Engineer, e-mail: joooneg@yandex.ru


LLC «Laser Center» (St. Petersburg, Russia)

E. Yu. Zhdanova, Cand. Eng. (Ph. D.), Engineer Technologist, e-mail: ivan.grey.90@mail.ru


National Research University «ITMO» (St. Petersburg, Russia)

A. Ramos-Velazkuez, Cand. Eng. (Ph. D.), Research Engineer, e-mail: alejandroramosv@itmo.ru

Abstract

The workability of equipment operating in the northern regions can be ensured by using various technologies during its manufacture. Laser exposure is widely used in various industries, including manufacture of welded joints, heat treatment of small areas, application of coatings, preparation of surfaces for further processing, and marking of products both directly on the material surface and on special films. This work examines the processes occurring in the surface layer of AISI 321 austenitic steel products exposed to nanosecond laser radiation. Various methods for controlling the metal melt in the exposed zone are considered. It has previously been established that moving the beam along a trochoidal trajectory allows creation of stable linear relief up to ~700 µm high, while moving along a spiral trajectory produces point elements up to ~500 µm high. In the present study, structures up to ~400 µ m high were obtained using a linear trajectory. Laser processing methods that can be implemented using standard low-power laser equipment, were studied, enabling surface processing of austenitic steel without use of protective gas environments. It was shown that laser exposure of surface layers preserves the austenitic structure, stabilizes it, just reduces the oxide phase content, and does not lead to the formation of carbide phases in the area of the formed relief. These results are important for various branches of mechanical engineering, including laser processing during welding, creation of functional surfaces, application of durable markings, production of a preset profile in the manufacture of decorative and applied products, and tactile elements such as Braille script. The study demonstrates the potential of liquid phase control for effective relief formation on the surface of austenitic steels.

keywords Laser processing, austenitic steel, surface relief, microhardness, microstructure, Braille scripts, tactile elements
References

1. Romasheva N., Dmitrieva D. Energy resources exploitation in the Russian Arctic: challenges and prospects for the sustainable development of the ecosystem. Energies. 2021. Vol. 14. Art. 8300. DOI: 10.3390/en14248300
2. Buslaev G., Tsvetkov P., Lavrik A., Kunshin A., Loseva E., Sidorov D. Ensuring the sustainability of Arctic industrial facilities under conditions of global climate change. Resources. 2021. Vol. 10. Art. 128. DOI: 10.3390/resources10120128
3. Litvinenko V. S., Petrov E. I., Vasilevskaya D. V., Yakovenki A. V., Naumov I. A., Ratnikov M. A. Assessment of the role of the state in the management of mineral resources. Journal of Mining Institute. 2023. Vol. 259. pp. 95–111. DOI: 10.31897/PMI.2022.100
4. Bolobov V. I., Tsvetkov A. S., Popov G. G., Dagaev S. E., Salnikov D. R., Tigranyan G. A. Comparison of existing methods for studying compatibility of pipeline steels with compressed hydrogen. International Journal of Engineering, Transactions A: Basics. 2026. Vol. 39. No. 04. pp. 917–924. DOI: 10.5829/IJE.2026.39.04A.10
5. Solovyeva V. A., Almuhammadi K. H., Badeghaish W. O. Current downhole corrosion control solutions and trends in the oil and gas industry: a review. Materials. 2023. Vol. 16. No. 5. Art. 1795. DOI: 10.3390/ma16051795
6. Shakhnazarov K. Y., Rafikov A. R. The influence of hardening heat treatment modes on the crack propagation resistance of 5H2SMF die steel. Frontier Materials & Technologies. 2025. No. 2. pp. 95–101. DOI: 10.18323/2782-4039-2025-2-72-8
7. Cherepovitsyn A. E., Tcvetkov P. S., Evseeva O. O. Critical analysis of methodological approaches to assessing sustainability of Arctic oil and gas projects. Journal of Mining Institute. 2021. Vol. 249. pp. 463–479. DOI: 10.31897/PMI.2021.3.15
8. Pashkevich N. V., Khloponina V. S., Pozdnyakov N. A., Avericheva A. A. Analysing the problems of reproducing the mineral resource base of scarce strategic minerals. Journal of Mining Institute. 2024. Vol. 270. pp. 1004–1023.
9. Chichenev N. A., Gorbatyuk S. M., Karfidov A. O., Chicheneva O. N. Experimental study of the process of laser treatment of steel Kh12M. CIS Iron and Steel Review. 2024. Vol. 27. pp. 193–107.
10. Rezayat M., Rovira J. J. R., García A. M. Phase transformation and residual stresses after laser surface modification of metastable austenitic stainless steel. Advances in fracture and damage mechanics XX. 2023. Vol. 2848. No. 1. pp. 020005.
11. Zhang Z., Ma G., Azarmi F., Cui Y. Suppression of shrinkage porosity in laser-joining of CFRP and steel using a laser surface modification process Sur-Sculpt®. International Journal of Adhesion and Adhesives. 2018. Vol. 85. pp. 184–192. DOI: 10.1016/j.ijadhadh.2018.06.013
12. Pryakhin E. I., Pribytkova D. A. The influence of the quality of surface preparation of pipes for heating networks on their corrosion resistance during operation in underground conditions. Chernye Metally. 2023. No. 11. pp. 97–102.
13. Chen C., Wang J., Zhang Z., Dai Y., Zhang J., Dong B. et al. Boosting NIR laser marking efficiency of a transparent epoxy using a layered double hydroxide. ACS Applied Polymer Materials. 2024. Vol. 6. No. 14. pp. 8679–8686. DOI: 10.1021/acsapm.4c00648
14. Lu Y., Shi X., Huang Z., Li T., Zhang M. et al. Nanosecond laser coloration on stainless steel surface. Scientific Reports. 2017. Vol. 7. Art. 7092. DOI: 10.1038/s41598-017-07373-8
15. Lazov L., Dinev D., Stoyanov V. et al. Influence of power density and frequency on the process of laser marking of steel products. Infrared Physics & Technology. 2021. Vol. 116. Art. 103783. DOI: 10.1016/j.infrared.2021.103783
16. Dong J., Liu Y., Pacella M. Surface texturing and wettability modification by nanosecond pulse laser ablation of stainless steels. Coatings. 2024. Vol. 14. No. 4. Art. 467. DOI: 10.3390/coatings14040467
17. Li X., Li G., Lei Y., Gao L., Zhang L., Yang K. Influence of laser surface texture on the anti-friction properties of 304 stainless steel. Machines. 2023. Vol. 11. No. 4. Art. 473. DOI: 10.3390/machines11040473
18. Zawadzki P., Dobrotvorskiy S., Aleksenko B., Talar R. Effect of nanosecond laser texturization on tribological behavior of AISI 321 stainless steel. Materials. 2024. Vol. 17. No. 23. Art. 5870. DOI: 10.3390/ma17235870
19. Gazott I., et al. Influence of surface treatment by laser irradiation on bacterial adhesion on titanium implants and their alloys: systematic review. 2024. DOI: 10.17605/OSF.IO/FTA3W
20. Gornyi S. G., Grigor’ev A. M., Patrov M. I., Solov’ev V. D., Turichin G. Specific features of metal surface processing by nanosecond laser pulse trains. Quantum Electronics. 2002. Vol. 32. pp. 929–932. DOI: 10.1070/QE2002v032n10ABEH002320
21. Blackburn J., Hilton P. Producing surface features with a 200 W Yb-fibre laser and the Surfi-Sculpt® process. Physics Procedia. 2011. Vol. 12. No. 1. pp. 529–536. DOI: 10.1016/j.phpro.2011.03.065
22. Amiaga J. V., Gorny S. G., Vologzhanina S. А. Development of a fast method for forming Braille on the surface of steels with IR nanosecond pulsed 50 W fiber laser. AIP Conference Proceedings. 2020. No. 2285.
23. Kolobov Yu. R., Manokhin S. S. Kolpakov A. Ya., Poplavskii A. I., Yapryntsev M. N., Odintsova G. V., Betekhtin V. I., Kadomtsev A. G., Narykova M. V. A study of the influence of irradiation of carbon diamond-like coatings with nanosecond laser pulses on their structural-phase composition and tribological properties. Russian Physics Journal. 2021. Vol. 64. No. 6. pp. 1055–1059. DOI: 10.1007/s11182-021-02465-5

24. Samanta A. et al. Nanosecond pulsed laser processing turns engineering metal alloys antireflective and superwicking. Journal of Manufacturing Processes. 2020. Article ID 102929. DOI: 10.1016/j.jmapro.2020.02.029
25. Pryakhin E. I., Azarov V. A. Study of protective properties of fluoroplastic polymer compositions on steel samples with the aim of their potential use for internal coatings of main gas pipelines. Chernye Metally. 2025. No. 4. pp. 62–66.

26. Xu J., Zou P., Wang W., Kang D. Study on the mechanism of surface topography evolution in melting and transition regimes of laser polishing. Optics & Laser Technology. 2021. Vol. 139. Art. 106947. DOI: 10.1016/j.optlastec.2021.106947
27. Fayazfar H., Salarian M., Rogalsky A., Sarker D., Russo P., Paserin V., Toyserkani E. A critical review of powder-based additive manufacturing of ferrous alloys: process parameters, microstructure and mechanical properties. Materials & Design. 2018. Vol. 144. pp. 98–128. DOI: 10.1016/j.matdes.2018.02.018
28. Petkova A. P., Zlotin V. A. Analysis of the efficiency of reducing hydrogen losses in a pipeline made of various austenitic stainless steels. Chernye Metally. 2024. No. 9. pp. 50–54.
29. Yuan B. S., Wu X., Chen L., Tong Z., Gong H. The effect of spot size combination mode on ablation morphology of aluminum alloy by millisecond–nanosecond combined-pulse laser. Materials. 2018. Vol. 11. No. 8. Art. 1419. DOI: 10.3390/ma11081419
30. Kuznetsov P. A., Krasikov A. V., Staritsyn M. V., Mushnikova S. Y., Parmenova O. N. Features of local corrosion of AISI 316l steel manufactured by selective laser melting. Protection of Metals and Physical Chemistry of Surfaces. 2018. Vol. 54. No. 3. pp. 484–489. DOI: 10.7868/S0044185618030142
31. Brover G.I., Shcherbakova E.E. Role of carbides in the formation of structure and properties of steels under pulsed laser irradiation. Safety of Technogenic and Natural Systems. 2023. Vol. 7. No. 4. pp. 106–118. DOI: 10.23947/2541-9129-2023-7-4-106-118
32. Alkhawaldeh O., Coupland J., Jones L.C. Increasing the efficiency of material removal using dual laser micromachining. The International Journal of Advanced Manufacturing Technology. 2020. Vol. 107. pp. 3995–4007. DOI: 10.1007/s00170-020-05250-9
33. Certificate of State Registration of the Database No. 2024624959 (Russian Federation). Database of Thermophysical and Optical Parameters of Metals for Selecting Laser Processing Modes: No. 2024624795: filed Oct 29, 2024; published Nov 6, 2024. Vologzhanina S. A., Khuznakhmetov R. M., Aleksandruk B. S.; applicant: Federal State Budgetary Educational Institution of Higher Education “Saint Petersburg Mining University named after Empress Catherine II.”

34. Rezayat M., Moradi M., Mateo A. Nanosecond multi-passes laser surface texturing on AISI 301LN TRIP steel. The International Journal of Advanced Manufacturing Technology. 2024. Vol. 132. P. 4753–4764. — DOI: 10.1007/s00170-024-13638-0
35. Mazhukin V. I., Samokhin A. A., Demin M. M., Shapranov A. V. Explosive boiling of metals upon irradiation by a nanosecond laser pulse. Quantum Electronics. 2014. Vol. 44. No. 4. pp. 283–285. DOI: 10.1070/QE2014v044n04ABEH015388
36. Bauer F., Michalowski A., Kiedrowski T., Nolte S. Heat accumulation in ultra-short pulsed scanning laser ablation of metals. Optics Express. 2015. Vol. 23. No. 2. pp. 1035–1043. DOI: 10.1364/OE.23.001035
37. Atroshenko S. A., Gerashchenkov D. A., Kuznetsov A. V., Savenkov G. G., Smakovsky M. S. Influence of combined treatment of the surface layer on the impact resistance of steel. Physics of the Solid State. 2024. Vol. 66. No. 2. pp. 245–258. DOI: 10.61011/FTT.2024.02.57248.269

Full content Influence of laser exposure on the processes occurring in a surface layer of austenitic steel products
Back