| ArticleAuthorData |
Polzunov Altai State Technical University (Barnaul, Russia)1 ; The Advanced Textile Technology Innovation Center (Jianhu Laboratory) (Shaoxing, China)2 ; Wuhan Textile University (Wuhan, China)3
S. G. Ivanov, Dr. Eng., Leading Researcher1,2, Leading Researcher of Hubei Digital Textile Equipment Key Laboratory3, e-mail: serg225582@yandex.ru
Polzunov Altai State Technical University (Barnaul, Russia)1 ; Zhejiang Briliant Refrigeration Equipment Co., Ltd. (Xingchang, China)2
M. A. Guryev, Cand. Eng., Associate Prof., Dept. of Mechanical Engineering Technology1, Technical Director2, e-mail: gurievma@mail.ru
Wuhan Textile University (Wuhan, China)1 ; Moscow Polytechnic University (Moscow, Russia)2 ; Vladimir State University named after Alexander and Nikolay Stoletovs (Vladimir, Russia)3 V. B. Deev*, Dr. Eng., Prof., Prof. of Digital Textile Equipment Key Laboratory1, Head of the Dept. of Equipment and Technologies of the Welding2, Chief Researcher3, e-mail: deev.vb@mail.ru
Polzunov Altai State Technical University (Barnaul, Russia)
M. N. Zenin, Postgraduate Student, Junior Researcher, Engineer of the Department of Modern Special Materials, e-mail: mikhail.zenin.96@mail.ru
*Corresponding author |
| Abstract |
High-chromium, low-nickel corrosion-resistant steels of the austenitic-martensitic class exhibit excellent corrosion resistance along with reasonably good mechanical strength, making them promising for various applications in mechanical engineering and building construction. Upon plastic deformation, their strength characteristics can further increase. However, the widespread industrial application of these steels is constrained by the complexity of their plastic forming processes (e.g., stamping, upsetting), due to a high propensity for cracking, which results in defects in the final products. This study investigates the causes of cracking in austenitic-martensitic corrosionresistant steels during plastic deformation, using high-chromium, low-nickel steel grade 07Kh16N6 as a representative material. Metallographic analysis reveals that the primary cause of crack formation during plastic deformation is the formation of deformation-induced martensite, which is associated with a negative volume change. This local volume contraction leads to the development of tensile stresses at sites of martensitic transformation. It is reasonable to assume that when large volumes of deformation-induced martensite form rapidly, the resulting tensile stresses may exceed the material’s strength, thereby initiating cracking. Moreover, the generated tensile stresses can also promote the formation of so-called athermal martensite, which is accompanied by a slight volume expansion and, thus, a partial compensation of the tensile stresses. However, at high deformation rates, the formation of athermal martensite tends to lag behind the transformation-induced martensitic process, exacerbating the tendency for crack initiation and propagation. This hypothesis is indirectly supported by other researchers, who have also identified optimal strain rates (6.67·10–4 s–1) and maximum allowable single-pass reduction ratio (no more than 19–22 %). In cases where higher reduction ratios are required, a multi-pass deformation strategy with intermediate recrystallization annealing is recommended to eliminate the martensitic phase and reduce cracking risk.
The research was carried out within the state assignment in the field of scientific activity of the Ministry of Science and Higher Education of the Russian Federation (theme FZUN-2024-0004, state assignment of the VlSU). |
| References |
1. Deev V. B., Prusov E. S., Vdovin K. N., Bazlova T. A., Temlyantsev M. V. Influence of Melting Unit Type on the Properties of Middle-Carbon Cast Steel. ARPN Journal of Engineering and Applied Sciences. 2018. Vol. 13. No. 3. pp. 998–1001. 2. Prikhod’ko O. G., Deev V. B., Prusov E. S., Kutsenko A. I. Influence of Thermophysical Characteristics of Alloy and Mold Material on Casting Solidification Rate. Steel in Translation. 2020. Vol. 50 (5). pp. 296–302. 3. Prikhodko O. G., Deev V. B., Kutsenko A. I., Prusov E. S. Analysis of the Solidification Process of Castings Depending on Their Configuration and Material of the Mold. CIS Iron and Steel Review. 2023. Vol. 25. pp. 31–38. 4. Sergeev S. N., Safarov I. M., Zhilyaev A. P., Galeev R. M., Gladkovskii S. V., Dvoinikov D. A. Effect of Deformation-Thermal Processing on the Microstructure and Mechanical Properties of Low-Carbon Structural Steel. Physics of Metals and Metallography. 2021. Vol. 122. pp. 621–627. 5. Xu X., Zhang P., Fang J., Wen L., Yang Y., Zhao Y., Chen L. The hot deformation behavior and processing map analysis of a highnitrogen austenitic stainless steel. Journal of Materials Research and Technology. 2024 Vol. 33. pp. 1359–1365. 6. Das C. R., Ravishankar C., Albert S. K., Krishnan S. A., Moitra A., Rajkumar K. V., Bhaduri A. K. Failure analysis of cold worked AISI 301 SS diaphragm of gas pump. Engineering Failure Analysis. 2018. Vol. 92. pp. 456–465.
7. Golovkin P. A., Kryukov A. V. The effect of forging on the material structure and surface quality of workpieces during finishing turning of steel 07Kh16N6-Sh. Tekhnologiya mashinostroeniya. 2023. No 10. pp. 32–39. 8. Il’in A. A., Krikushenko E. S., Alekseev V. V., Silina V. I., Belousov V. V. Method of heat treatment of martensitic-aging steels 08Kh15N5D2T, 06Kh14N6D2MBT and 07Kh16N6. Metallovedenie i termicheskaja obrabotka metallov. 2013. No 3 (693). pp. 23–26. 9. Pomorcev E. N., Galiahmetov I. G., Chigarin V. I., Gabdullina Z. R., Livshits B. M., Basarkin Yu. A., Teslenko E. P. The introduction of a technologically advanced corrosion-resistant material instead of steel 07Kh16N6 for the manufacture of impellers of centrifugal compressors. Kompressornaya tehnika i pnevmatika. 2013. No 5. p. 44. 10. Osminin K. A., Chumanov I. V. Influence of technological parameters of production and chemical composition of steel grades 07Kh16N6, 09Kh16N4B on their operational characteristics. Sovremennye problemy elektrometallurgii stali. Materialy XI mezhdunarodnoy konferentsii. 2001. pp. 131–132. 11. Antipin N. A., Gecov L. B., Gnedenkov E. V., Mozhajskaja N. V., Rybnikov A. I., Semenov A. S. Strength and crack resistance of centrifugal compressor wheels. Gazovaya promyshlennost. 2017. No 11 (760). pp. 120. 12. Proskurin V. V. Influence of temperature-velocity loading conditions on the complex of mechanical properties of chromiumnickel steels. Dissertation … of Candidate of Technical Sciences. Voronezh Technical University. Kursk, 1996. 135 p. 13. Pauls V. Ju. Main structural steels for meat processing equipment. Inzhenernye tehnologii v selskom i lesnom khozyaistve. Proceedings of Voronezh national scientific and practical confrence. 2020. pp. 69–73. 14. Hedström P. Deformation induced martensitic transformation of metastable stainless steel AISI 301. Licentiate thesis 2005-79, Department of Applied Physics and Mechanical Engineering, Luleå University of Technology, Sweden. 90 р. 15. Bunshah R. F., Mehl R. F. Rate of propagation of martensite. Transactions AIME. 1953. 197. pp. 1251–1258. 16. Olson G. B., Cohen M. A mechanism for the strain-induced nucleation of martensitic transformations. Journal of the Less Common Metals. 1972. Vol. 28. Iss. 1. pp. 107–118. DOI: 10.1016/0022-5088(72)90173-7 17. Angel T. Formation of Martensite in Austenitic Stainless Steels Effects of Deformation, Temperature, and Composition. J. Iron and Steel Inst. 1954. Vol. 177. pp. 165–174. 18. Nohara K., Ono H., Ohashi N. Composition and grain size dependence of process-induced martensitic transformation in metastable austenitic stainless steels. Iron and Steel. 1977. Vol. 63. No. 5. pp. 772–782. DOI: 10.2355/tetsutohagane1955.63.5_772 19. Patel J. R., Cohen M. Criterion for the action of applied stress in the martensitic transformation. Acta Metall. 1953. Vol 1. Iss. 5. pp. 531–538. DOI: 10.1016/0001-6160(53)90083-2 20. Peckner D., Bernstein I. Handbook of stainless steels: New York (N.Y.). McGraw-Hill, 1977. 800 p. 21. Peterson S. F., Mataya M. C., Matlock D. K. The formability of austenitic stainless steels. JOM. 1997. 49. p. 54–58. DOI: 10.1007/BF02914352 22. Mukarati T. W., Mostert R. J. and Siyasiya C. W. Development of a mathematical equation describing the strain hardening behaviour of metastable AISI 301 austenitic stainless steel. IOP Conference Series: Materials Science and Engineering. Conference of the South African Advanced Materials Initiative (CoSAAMI 2019) 22–25 October 2019. 2019. Vol. 65. No. 1. 012008. DOI: 10.1088/1757-899X/655/1/012008 23. Montepagano D., Citi I., Guerra R., Di Nunzio P. E., Ruffini F. Enhancement of ductility of work hardened strips in AISI 301 austenitic stainless steel. La Metallurgia Italiana. 2022. July-August. pp. 7–15. 24. ASM HandBook Vol. 9. Metallography and Microstructures. 2004. ASM International. 4753 p. DOI: 10.31399/asm.hb.v09.9781627081771 25. ASM HandBook Vol. 4А. Steel Heat Treating Fundamentals and Processes. 2013. ASM International. 753 p. DOI: 10.31399/asm.hb.v04a.9781627081658 26. Ivanov S. G., Guryev A. M., Zemlyakov S. A., Guy’ev M. A., Romanenko V. V. Features of the sample preparation methodology for the automatic analysis of the carbide phase of steel Kh12F1 after cementation in vacuum using the “Thihomet PRO” software package. Polzunovskiy vestnik. 2020. No. 2. pp. 165–168. 27. Guryev A. M., Haraev Yu. P. Theory and practice of obtaining cast tools. Barnaul, Izdftelstvo Altaiskogo gosudarstvennogo tekhnicheskogo universiteta, 2005. 220 p. 28. Ivanov S. G., Guryev A. M., Zemlyakov S. A., Guryev M. A. The method of sample preparation of high-alloy steel samples for automatic analysis of the carbide phase. Polzunovskiy vestnik. 2020. No. 3. pp. 102–105. 29. Vazquez-Fernandez N. I., Soares G. C., Smith J. L. et al. Adiabatic Heating of Austenitic Stainless Steels at Different Strain Rates. J. dynamic behavior mater. 2019. 5. pp. 221–229. DOI: 10.1007/s40870-019-00204-z 30. Papula S., Saukkonen T., Talonen J., Hänninen H. Delayed Cracking of Metastable Austenitic Stainless Steels after Deep Drawing. ISIJ International. 2015. Vol. 55. Iss. 10. pp. 2182–2188. DOI: 10.2355/isijinternational.ISIJINT-2015-078 31. Gansel R., Heinrich C., Lohrengel A. et al. Development of Material Sensors Made of Metastable Austenitic Stainless Steel for Load Monitoring. J. of Mater. Eng. and Perform. 2024. Vol. 33. pp. 13570–13582. DOI: 10.1007/s11665-024-09910-9 32. Papula S., Talonen J., Hänninen H. Effect of Residual Stress and Strain-Induced α′-Martensite on Delayed Cracking of Metastable Austenitic Stainless Steels. Metall Mater. Trans. A. 2014. Vol. 45. pp. 1238–1246. DOI: 10.1007/s11661-013-2090-3 33. Li J., Li Y., Wang J., Han P. Effect of Silicon on the Martensitic Nucleation and Transformation of 301 Stainless Steel under Various Cold-Rolling Deformations. Metals. 2024. Vol. 14. 827. DOI: 10.3390/met14070827 34. Hedström P., Almer J., Lienert U., Odén M. Evolution of Residual Strains in Metastable Austenitic Stainless Steels and the Accompanying Strain Induced Martensitic Transformation. MSF. 2006. DOI: 10.4028/www.scientific.net/msf.524-525.821 35. Santos J. L., Monteiro S. N., Cândido V. S., da Silva A. O., Tommasini F. J., Fracture Modes of AISI Type 302 Stainless Steel Under Metastable Plastic Deformation. Materials Research. 2017. Vol. 20 (Suppl. No. 2). pp. 596–602. DOI: 10.1590/1980-5373-MR-2017-0051 36. Forsstrom A., Talonen J., Saukkonen T., Hanninen H. Grain boundary engineering of metastable 204Cu, 301, and 301LN austenitic stainless steels to improve their sensitization resistance. Materials and Corrosion. 2015. Vol. 66. No. 2. DOI: 10.1002/maco.201407694 37. Tiamiyu A. A., Zhao S., Li Z. et al. Thermal and Mechanical Stability of Austenite in Metastable Austenitic Stainless Steel. Metall Mater. Trans. A. 2019. Vol. 50. pp. 4513–4530. DOI: 10.1007/s11661-019-05362-2 38. Leso T. P., Mukarati T. W., Mostert R., Siyasiya C. W. Strain‐Induced Martensitic Transformation and the Mechanism of Wear and Rolling Contact Fatigue of AISI 301LN Metastable Austenitic Stainless Steel. Steel Research International. 2024. Vol. 95. No. 9. DOI: 10.1002/srin.202400128 |