Journals →  Non-ferrous Мetals →  2025 →  #2 →  Back

MATERIALS SCIENCE
ArticleName Usage of synchrotron radiation for analyzing texture inhomogeneity in zirconium-based alloy tubes
DOI 10.17580/nfm.2025.02.06
ArticleAuthor Isaenkova M. G., Krymskaya O. A., Rogovskiy V. A., Kozlov I. V., Fesenko V. A.
ArticleAuthorData

National Research Nuclear University “MEPhI”, Moscow, Russia.

M. G. Isaenkova*, Professor, Doctor of Physical and Mathematical Sciences, e-mail: MGIsaenkova@mephi.ru
O. A. Krymskaya, Associate Professor, Candidate of Physical and Mathematical Sciences, e-mail: OAKrymskaya@mephi.ru
V. A. Rogovskiy, Engineer, e-mail: victor_rsn@bk.ru
I. V. Kozlov, Associate Professor, Candidate of Technical Sciences, e-mail: ilya_mephist@mail.ru
V. A. Fesenko, Lead Engineer, e-mail: fesenko.vlad@mail.ru

 

*Correspondence author.

Abstract

This paper presents the results of using synchrotron radiation to study the circumferential and layer-by-layer inhomogeneity of zirconium alloy tubes. Reducing the size of the initial synchrotron beam to 200×200 μm allows us to analyze the layer-by-layer inhomogeneity of tubes with a wall thickness of 600 μm and above. Based on the results of the analysis of the circumferential inhomogeneity of the cladding tubes and guide channels for the integral texture f-parameters, the error value was 0.04, which is twice as high as the error when using the standard X-ray method. The maximum error in integral texture f-parameters is achieved for recrystallized samples, i.e. when the number of grains from which the diffraction pattern is formed decreases. The division of Debye rings into individual reflections also leads to a reduction of the statistical significance of the data obtained and an increase in the error in processing the diffraction patterns. Layer-by-layer analysis of the studied cold-rolled and annealed tubes made it possible to identify the features of plastic deformation of the tubes.

The work was carried out with the financial support of the Russian Science Foundation (project № 24-79-10289, https://rscf.ru/project/24-79-10289/).
The authors express their gratitude to the Joint-stock company “Advanced Research Institute of Inorganic Materials named after Academician A. A. Bochvar” for providing samples for the study.
X-ray diffraction studies were performed using the unique scientific facility “Kurchatov synchrotron radiation source “KISI-Kurchatov” of the National Research Center “Kurchatov Institute”.

keywords Syncrotron radiation, zirconium, crystallographyc texture, inhomogeneity, cold rolling, X-ray analysis, heat treatment, structure.
References

1. Perlovich Yu. A., Isaenkova M. G. Structural Inhomogeneity of Textured Metallic Materials. Moscow: National Research Nuclear University “MEPhI”, 2015. 398 p.
2. Isaenkova M. G., Perlovich Yu. A. Regularities of Crystallographic Texture Development and Substructural Inhomogeneity in Zirconium Alloys During Deformation and Heat Treatment. Moscow: National Research Nuclear University “MEPhI”, 2014. 528 p.
3. Kocks U. F., Tomé C. N., Wenk H.-R. Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties. Cambridge University Press, 1998. 676 p.
4. Perlovich Yu., Bunge H. J., Isaenkova M. Inhomogeneous Istribution of Residual Deformation Effects in Textured BCC Metals. Textures and Microstructures. 1997. Vol. 29. pp. 241–266.
5. Perlovich Yu., Bunge H. J., Isaenkova M., Fesenko V. The Distribution of Elastic Deformation in Textured Materials as Revealed by Peak Position Figures. Materials Science Forum. 1998. Vols. 273-275. pp. 655–666.
6. Isaenkova M. G., Perlovich Yu. A., Soe San Thu, Krymskaya O. A., Fesenko V. A. Development of Crystallographic Texture in the Time of Rolling of Zr Monocrystals and Their Recrystallization. Tsvetnye Metally. 2014. No. 12. pp. 73–78.
7. Vishnyakov Ya. D., Babareko A. A., Vladimirov S. A., Egiz I. V. Theory of Texture Formation in Metals and Alloys. Moscow: Nauka, 1979. 343 p.
8. Isaenkova M. G., Petrov M. I., Kozlov I. V., Bogomolova A. V. Structural Features of Hydrogenated E110opt and
E635 Tubes. Non-ferrous Metals. 2023. No. 1. рр. 41–48.
9. Isaenkova M. G., Krymskaya O. A., Klyukova K. E., Bogomolova A. V., Dzhumaev P. S., Kozlov I. V., Fesenko V. A. Comparison of the Texture Analysis Results of Zirconium Alloys According to the Data of Backscattered Electron Diffraction and X-Ray Radiation of Different Power. Letters on Materials. 2023. Vol. 13, Iss. 4. pp. 341–346.
10. Isaenkova M., Krymskaya O., Klyukova K., Bogomolova A., Kozlov I., Dzhumaev P., Fesenko V., Svetogorov R. Regula rities of Changes in the Structure of Different Phases of Deformed Zirconium Alloys as a Result of Raising the Annealing Temperature According to Texture Analysis Data. Metals. 2023. Vol. 13, Iss. 10. 1784.
11. Wenk H.-R., Grigull S. Synchrotron Texture Analysis with Area Detectors. Journal of Applied Crystallography. 2003. Vol. 36. pp. 1040–1049.
12. Lutterotti L., Matthies S., Wenk H.-R., Schultz A. S. Richardson J. W. (Jr.). Combined Texture and Structure Analysis of Deformed Limestone from Time-of-Flight Neutron Diffraction Spectra. Journal of Applied Physics. 1997. Vol. 81, Iss. 2. pp. 594–600.
13. Lutterotti L., Bortolotti M., Ischia G., Lonardelli I., Wenk H.-R. Rietveld Texture Analysis from Diffraction Images. Zeitschrift für Kristallographie Supplements. 2007. Vol. 26. pp. 125–130.
14. Dollase W. A. Correction of Intensities for Preferred Orientation in Powder Diffractometry: Application of the March Model. Journal of Applied Crystallography. 1986. Vol. 19. pp. 267–272.
15. Lutterotti L., Vasin R., Wenk H.-R. Rietveld Texture Analysis from Synchrotron Diffraction Images. I. Calibration and Basic Analysis. Powder Diffraction. 2014. Vol. 29, Iss. 1. pp. 76–84.

16. Wenk H.-R., Lutterotti L., Kaercher P., Kanitpanyacharoen W., Miyagi L., Vasin R. Rietveld Texture Analysis from Synchrotron Diffraction Images. II. Complex Multiphase Materials and Diamond Anvil Cell Experiments. Powder Diffraction. 2014. Vol. 29, Iss. 3. pp. 220–232.
17. Lonardelli I., Wenk H.-R., Lutterotti L., Goodwin M. Texture Analysis from Synchrotron Diffraction Images with the Rietveld Method: Dinosaur Tendon and Salmon Scale. Journal of Synchrotron Radiation. 2005. Vol. 12. pp. 354–360.
18. Ischia G., Wenk H.-R., Lutterotti L., Berberich F. Quantitative Rietveld Texture Analysis of Zirconium from Single Synchrotron Diffraction Images. Journal of Applied Crystallography. 2005. Vol. 38. pp. 377–380.
19. Lutterotti L. Maud: a Rietveld analysis program designed for the internet and experiment integration. Acta Crystallo graphica Section A: Foundations and. Advances. 2000. Suppll. 56. s54.
20. Kearns J. J. Terminal Solubility and Partitioning of Hydrogen in the Alpha Phase of Zirconium, Zircaloy-2 and Zircaloy-4. Journal of Nuclear Materials. 1967. Vol. 22. pp. 292–303.
21. MTEX Software for Analyzing and Modeling Crystallographic Textures by Means of EBSD or Pole Figure Data (TU Chemnitz, Germany). URL: http://mtex-toolbox.github.io (Accessed Date: 26.09.2025).
22. Causey A. R., Woo C. H., Holt R. A. The Effect of Intergranular Stresses on the Texture Dependence of Irradiation Growth in Zirconium Alloys. Journal of Nuclear Materials. 1988. Vol. 159. pp. 225–236.
23. Wen W., Capolungo L., Tomé C. N. Mechanism-Based Modeling of Solute Strengthening: Application to Thermal Creep in Zr Alloy. International Journal of Plasticity. 2018. Vol. 106, pp. 88–106.
24. Beskorovayny N., Kalin B., Platonov P., Chernov I. Structural Materials of Nuclear Reactors. Moscow: Energoatomizdat, 1995. 704 p.

Full content Usage of synchrotron radiation for analyzing texture inhomogeneity in zirconium-based alloy tubes
Back