Journals →  Chernye Metally →  2025 →  #12 →  Back

Metal Science and Heat Treatment
ArticleName Investigation of the influence of heat treatment on the microstructure and mechanical properties of 35KhGSL steel for teeth and crowns of a quarry excavator
DOI 10.17580/chm.2025.12.08
ArticleAuthor B. S. Ermakov, O. V. Shvetsov, S. B. Ermakov, A. M. Zolotov, S. A. Vologzhanina
ArticleAuthorData

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
B. S. Ermakov, Dr. Eng., Head of the Materials Resources Laboratory, e-mail: ermakov_bs@spbstu.ru
O. V. Shvetsov, Cand. Eng., Deputy Head of the Materials Resources Laboratory
S. B. Ermakov, Cand. Eng., Research Engineer, Scientific and Technical Complex “New Technologies
and Materials”
A. M. Zolotov, Dr. Eng., Prof., Higher School of Physics and Materials Technology

 

Empress Catherine II St. Petersburg Mining University, St. Petersburg, Russia

S. A. Vologzhanina, Dr. Eng., Prof., Dept. of Materials Science and Technology of Art Products, e-mail: vologzhanina_sa@pers.spmi.ru

Abstract

The active development of Siberia, the Far East, and the Arctic shelf by mineral resource companies poses a number of challenges for specialists operating mining equipment. Downtime due to the failure of individual components and parts of mining equipment leads to significant losses. Therefore, ensuring the proper functioning of excavator teeth and bits is a pressing issue, especially for equipment operating in low-temperature environments. It is known that the heterogeneity of the microstructure of crowns and teeth determines their further performance. Despite the active implementation of modeling and forecasting of the formation of the cast structure in excavator bucket tooth castings, premature failure is still observed, especially during operation on hard rocks in low-temperature climates. The paper examines the influence of heattreatment on the structure and complex of properties of a material operating under wear conditions on soils of varying strength. It has been shown that only the use of complex heat treatment can ensure the performance of excavator teeth and crowns. The use of homogenization annealing before subsequent hardening and tempering reduces the negative impact of the hereditary interdendritic microstructure in the original state, ensuring the reliability of the working parts of excavators.
This study was supported by grant No. 24–29–00713 from the Russian Science Foundation, https://rscf.ru/project/24-29-00713/.

keywords Heat treatment, microstructure, mechanical properties at low temperatures, hardness, tooth crown, excavator bucket
References

1. Pashkevich N. V., Khloponina V. S., Pozdnyakov N. A., Avericheva A. A. Analysis of problems of reproduction of the mineral resource base of scarce strategic minerals. Zapiski Gornogo instituta. 2024. Vol. 270. pp. 1004–1023.
2. Bhattacharyya S., Fan L., Azam S., Liu Sh. Advances in coal mining technology and sustainable mining techniques. The Coal Handbook (Second Edition). Woodhead Publishing, 2023. pp. 263–321. DOI: 10.1016/B978-0-12-824328-2.00011-X
3. Zhdaneev O. V. Ensuring technological sovereignty of the fuel and energy complex industries of the Russian Federation. Zapiski Gornogo instituta. 2022. Vol. 258. pp. 1061–1078. DOI: 10.31897/PMI.2022.107

4. Alkova E. L., Panishev S. V., Maksimov M. S. Evaluation of the relative difficulty index of excavation of blasted rock mass in cryolithozone conditions. Uspekhi sovremennogo estestvoznaniya. 2020. No. 11. pp. 32–38. DOI: 10.17513/use.37511
5. Teplyakova A. V., Zhukov I. A., Martyushev N. V. Application of drilling machines with an impact-cam mechanism in various mining and geological conditions. Ustoychivoe razvitie gornykh territoriy. 2022. Vol. 14, No. 3. pp. 501–511. DOI: 10.21177/1998-4502-2022-14-3-501-511
6. Zubov V. P., Fuk L. K. Development of a resource-saving technology for the extraction of flat coal layers with difficult-to-collapse roof rocks (using the example of mines of the Quang Ninh coal basin). Zapiski Gornogo instituta. 2022. Vol. 257. pp. 795–806. DOI: 10.31897/PMI.2022.72
7. Yungmeister D. A., Isaev A. I., Gasymov E. E. Justification of the parameters of a pneumatic hammer for regulating the drilling speed using an air flow. Gorny Zhurnal. 2022. No. 7. pp. 72–77.
8. Klevtsov V. A., Timofeev D. Yu., Khalimonenko A. D. Improved design of manufacturing processes for mining machines: basing concepts. Russian Engineering Research. 2023. Vol. 43. pp. 1367–1375. DOI: 10.3103/S1068798X23110151
9. Kazanin O. I., Ilyinets A. A. Ensuring the stability of mining workings during the preparation of mining sections of flat coal layers using three workings. Zapiski Gornogo instituta. 2022. Vol. 253. pp. 41–48. DOI: 10.31897/PMI.2022.1
10. Bolobov V. I., Plashchinsky V. A. The effect of impact duration on the efficiency of rock destruction and plastic deformation of metals. Gorny informatsionno-analiticheskiy byulleten. 2022. No. 3. pp. 78–96. DOI: 10.25018/0236_1493_2022_3_0_78
11. Nasonov M. Yu., Lykov Yu. V., Chong D. D. Study of the resource and durability of metal structures of excavators after the expiration of their service life. Ugol. 2020. No. 2. pp. 13–17. DOI: 10.18796/0041-5790-2020-2-13-17
12. Bolobov V. I., Akhmerov E. V., Rakitin I. V. Influence of the type of rocks on the patterns of wear of excavator bucket tooth crowns. Gorny informatsionno-analiticheskiy byulleten. 2022. No. (6−2). pp. 189–204. DOI: 10.25018/0236_1493_2022_62_0_189
13. Salimov A. E., Shibanov D. A., Ivanov S. L. Risks of failure of a quarry excavator associated with its maintenance and repair. Gornaya promyshlennost. 2024. No. 2. pp. 97–102. DOI: 10.30686/1609-9192-2024-2-97-102
14. Miladinov M., Sedmak S., Djordjevic B., Sedmak A., Vucetic F., Milivojevic A. Repairing of cracks on tooth gear ring of a bucket-wheel excavator. Procedia Structural Integrity. 2023. Vol. 48. pp. 27–32. DOI: 10.1016/j.prostr.2023.07.106
15. Nasonov M. Yu. , Iungmeister D. A., Do Duc Trong. Endurance evaluation of metal structures containing cracks in mining shovel EKG-10. GIAB. 2022. Vol. 11. pp. 67-79.
16. Ermakov B. S., Vologzhanina S. A., Ermakov S. B., Shvetsov O. V. Causes of accelerated failure of excavator bucket teeth crowns when working in Arctic conditions. Chernye Metally. 2024. No. 9. pp. 37–43.
17. Pobegaylo P. A., Kritsky D. Yu., Gilmashina T. R. Wear of elements of quarry excavators: analysis of the current state of the problem. Gorny informatsionno-analiticheskiy byulleten. 2021. No. 2. pp. 64–74. DOI: 10.25018/0236-1493-2021-2-0-64-74
18. Jie Li, Liujie Xu, YuFeng, Shubo Wu, Wei Li, Qiwei Wang, Peng Zhang, Xiaohui Tu. Hardening mechanism of high manganese steel during impact abrasive wear. Engineering Failure Analysis. 2023. Vol. 154. 107716. DOI: 10.1016/j.engfailanal.2023.107716
19. Bogdanov R. A. The cumulative effect of chemical composition and average diameter of sulfides and point oxides on impact strength of 20GL steel car castings. Chernye Metally. 2024. No. 5. pp. 10–17.
20. Golod V. M., Tsvetkov A. S., Teplukhina I. V., Le K. D. Analysis and prediction of dendritic heterogeneity arising in steel castings during crystallization. Liteynoe proizvodstvo. 2020. No. 9. pp. 17–22.
21. Shakhnazarov K. Yu. On the relationship between the extrema of fluidity, the dynamics of linear shrinkage of non-ferrous alloys and phase equilibrium diagrams. Liteynoe proizvodstvo. 2020. No. 5. pp. 8–13.
22. Gilmanshina T.R., Kritsky D. Yu., Tyurin S.I., Kovaleva A.A., Shigin A.O. Study of the possibility of increasing the reliability of large-sized cast products for mining equipment. Internet-zhurnal Naukovedenie. 2017. Vol. 9. No. 2. pp. 105–126.
23. Kazakov A. A., Lyubochko D. A., Ryaboshuk S. V., Chigintsev L. S. Investigation of the nature of nonmetallic inclusions in continuous-cast steel billets for rails and wheels. Chernye Metally. 2014. No. 4. pp. 37–42.
24. Fernández J. E., Vijande R., Tucho R., Rodrı́guez J., Martı́n A. Materials selection to excavator teeth in mining industry. Wear. 2001. Vol. 250, Iss. 1–12. pp. 11–18. DOI: 10.1016/S0043-1648(01)00624-X
25. Kolokoltsev V. M., Vdovin K. N., Sinitsky E. V., Feoktistov N. A. Assessment of operational durability and modeling of manufacturing technology for the “excavator bucket tooth” casting. Vestnik MGTU imeni G. I. Nosova. 2015. No. 4 pp. 61–64.
26. Skryabin M. L. Study of the influence of deoxidizer type on presence of non-metallic inclusions in steel castings. Informatsionno-tekhnologicheskiy vestnik. 2023. No. 4 (38). pp. 163–172.
27. Chechukha V. I., Sadokha M. A. Defects in castings during high-pressure die casting and measures to prevent their formation. Lityo i metallurgiya. 2024. No. 1. pp. 26–31. DOI: 10.21122/1683-6065-2024-1-26-31
28. Farisov R. D., Ioffe M. A., Kozlovsky V. N. Prevention of defects in cast iron castings using the principles of built-in quality. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2022. Vol. 24. No. 4 (108). pp. 22–28. DOI: 10.37313/1990-5378-2022-24-4-22-28
29. Sharov N. V., Platonov A. V., Chumakov V. A. Experience of OMZ-LP Company in the manufacture and quality assessment of castings of rapidly wearing parts made of high-manganese steels. Gornaya promyshlennost. 2012. No. 3 (103). pp. 28–32.
30. Zholdoshov B. M., Muratov V. S. Features of the influence of casting production technology on the structure of steel during heat treatment. Izvestiya Oshskogo tekhnologicheskogo universiteta. 2018. No. 3. pp. 123–126.
31. Dobrynina A. V., Khramovsky Yu. V. Heat treatment of cast structural steel using accelerated heating of castings. Stal. 2016. No. 5. pp. 57–59.
32. Anikeev A. N., Chumanov I. V., Sementinov I. A. Modeling a method for increasing the wear resistance of excavator crowns by dispersion hardening with titanium carbide. Stal. 2015. No. 2. pp. 72–74.
33. Abdullin A. D. Identification of microporosity defects in steel castings using computer modeling of the casting process in PROCAST. Metallurg. 2013. No. 3. pp. 19–23.
34. Matyushin K. R., Batraliev R. Sh., Aryshtaev A. G., Botsiev R. M. Experience in the use of industrial artificial intelligence in the polar branch of PJSC MMC Norilsk Nickel. Tsvetnye Metally. 2025. No. 6. pp. 94–101.
35. Reshetov M. A., Aleksandrova S. V. Application of artificial intelligence for predicting product defects. Izvestiya Tulskogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2025. No. 5. pp. 125–135. DOI: 10.24412/2071-6168-2025-5-125-126
36. GOST 54153–2010. Steel. Method of atomic emission spectral analysis. Introduced: 01.01.2012.
37. GOST 9013–59. Metals. Method of measuring Rockwell hardness. Introduced: 01.01.1969.
38. GOST 9450–76. Measurements of microhardness by diamond instrumetns indentation. Introduced: 01.01.1977

Language of full-text russian
Full content Buy
Back