| ArticleAuthorData |
Polzunov Altai State Technical University, Barnaul, Russia M. N. Zenin, Junior Researcher, e-mail: mikhail.zenin.96@mail.ru
Innovation Center for Modern Textile Technologies (Jianhu Laboratory), Shaoxing, China1 ; Wuhan Textile University, Wuhan, China2 ; Altai State University, Barnaul, Russia3
S. G. Ivanov, Dr. Eng., Leading Researcher1, Leading Researcher, National Key Laboratory of Digital Textile Machinery, Hubei Province2, Professor3, e-mail: serg225582@yandex.ru
Wuhan Textile University, Wuhan, China1 ; Jiangsu Suyang Packaging Co., Ltd, Yizheng City, Jiangsu, China2
S. A. Zemlyakov, Cand. Eng., Leading Researcher, National Key Laboratory of Digital Textile Machinery, Hubei Province1, Chief Researcher2, e-mail: kobalt_20@mail.ru
Wuhan Textile University, Wuhan, China1 ; Moscow Polytechnic University, Moscow, Russia2 ; Siberian State Industrial University, Novokuznetsk, Russia3
V. B. Deev*, Dr. Eng., Prof., National Key Laboratory of Digital Textile Machinery, Hubei Province1, Head of the Dept. of Welding Equipment and Technologies2; Consulting Professor, Dept. of Ferrous Metallurgy and Chemical Engineering3, e-mail: deev.vb@mail.ru
Polzunov Altai State Technical University, Barnaul, Russia1 ; Zhejiang Briliant Refrigeration Equipment Co., Ltd, Xingchang, China2
M. A. Guryev, Cand. Eng., Associate Prof., Dept. of Mechanical Engineering Technology1, Technical Director2, e-mail: gurievma@mail.ru
*Corresponding author |
| Abstract |
For the manufacture of advanced fuel systems such as the Common Rail system with more complex geometries and large cross-sections operating at pressures above 200 MPa, it is currently becoming somewhat difficult to guarantee high reliability of parts made of steel ShKh15. This is due to the fact that the operating modes of Common Rail type fuel systems at an operating pressure of 200 MPa are already approaching the maximum strength values of steel ShKh15. At the same time, to ensure the necessary strength properties and reliability of parts made of ShKh15 steel, rather complex, lengthy heat treatment operations are required, such as cold treatment, cryogenic treatment, multiple tempering, etc. Based on this, the replacement of ShKh15 steel with ShKh15SG steel may make it possible to avoid the use of additional heat treatment operations in the technological cycle of manufacturing fuel equipment parts, and therefore reduce the production time of parts and reduce their manufacturing cost. Based on the results of a comparison of the constructed diagrams of the isothermal decomposition of supercooled austenite, it is shown that, presumably, for ShKh15SG steel, the optimal austenitization temperature, according to the results of computer modeling of heat treatment conditions, may be temperatures of 840-880 °C, which naturally slightly exceeds the austenitization temperatures for ShKh15 steel (820-860 °C), but this will not significantly increase the cost of heat treatment. At these temperatures, a significant proportion of carbides will dissolve, and on the other hand, there should be no significant growth of the austenitic grain. |
| References |
1. Bhadeshia H. K. D. H. Steels for bearings. Progress in Materials Science. 2012. Vol. 57. No. 2. pp. 268-435. DOI: 10.1016/j.pmatsci.2011.06.002 2. Deev V. B., Prusov E. S., Vdovin K. N., Bazlova T. A., Temlyantsev M. V. Influence of melting unit type on the properties of middle-carbon cast steel. ARPN Journal of Engineering and Applied Sciences. 2018. Vol. 13, No. 3. pp. 998–1001. 3. Prikhod’ko O. G., Deev V. B., Prusov E. S., Kutsenko A. I. Influence of thermophysical characteristics of alloy and mold material on casting solidification rate. Steel in Translation. 2020. Vol. 50, Iss. 5. pp. 296–302. 4. Prikhodko O. G., Deev V. B., Kutsenko A. I., Prusov E. S. Analysis of the solidification process of castings depending on their configuration and material of the mold. CIS Iron and Steel Review. 2023. Vol. 25. pp. 31–38. 5. Deev V. B., Arapov S. L., Kosovich A. A., Lesiv E. M. Determination of rational heat treatment modes for new high-manganese austenitic steel using thermodynamic modeling. Chernye Metally. 2023. No. 11. pp. 75–80. 6. Xiong G., Wang Y., He B., Zhao L. Study on the recrystallization behaviour of hot deformed austenite in GCr15 bearing steel. Advanced Materials Research. 2011. Vol. 194-196. pp. 84-88. DOI: 10.4028/www.scientific.net/amr.194-196.84 7. Sun X., Zhang H., Yin P., Liu Y., Wang Q. Phase field investigation on the eutectoid transformation of Fe-1.05 wt%C alloy. Computational Materials Science. 2025. Vol. 248. 113599. DOI: 10.1016/j.commatsci.2024.113599
8. Wang L., Sun C., Cao Y., Guo Q., Song K., Liu H., Liu H., Fu P. Microstructure evolution under different austenitizing temperatures and its effect on mechanical properties and mechanisms in a newly high aluminum bearing steel. Journal of Materials Research and Technology. 2024. Vol. 30. pp. 9481-9493. DOI: 10.1016/j.jmrt.2024.06.030 9. Wang J., Wolk P. J. V. D., Zwaag S. V. D. Determination of martensite start temperature in engineering steels. Part I. Empirical relations describing the effect of steel chemistry. Materials Transactions JIM. 2014. Vol. 41. No. 7. pp. 761–768. DOI: 10.2320/matertrans1989.41.761 10. Frith P. Influence des inclusions et de la répartition des carbures sur le comportement à la fatigue des aciers élaborés de diverses manières. Revue de Métallurgie. 2017. Vol. 64. No. 6. pp. 531–549. DOI: 10.1051/metal/196764060531 11. Monma K., Maruta R., Yamamoto T., Wakikado Y. Effects of particle sizes of carbide and amounts of undissolved carbide on the fatigue life of bearing steel. Journal of the Japan Institute of Metals. 2017. Vol. 32. No. 12. pp. 1198–1204. DOI: 10.2320/jinstmet1952.32.12_1198 12. Yajima E. et al. Metallographic investigations on rolling fatigue life of ball bearing steel and effects of retained austenite on the fatigue life. Journal of the Japan Institute of Metals. 2017. Vol. 36. No. 7. pp. 711–719. DOI: 10.2320/jinstmet1952.36.7_711 13. Kim K., Lee J. S., Lee D. Effect of silicon on the spheroidization of cementite in hypereutectoid high carbon chromium bearing steels. Metals and Materials International. 2010. Vol. 16. No. 6. pp. 871-876. DOI: 10.1007/s12540-010-1203-4 14. Xu Z., Wang P., Zhang P., Wang B., Liu Y., Luan Y., Wang P., Li D., Zhang Z. Fatigue strength optimization of high-strength steels by precisely controlling microstructure and inclusions. Journal of Materials Science and Technology. 2025. Vol. 230. pp. 165–176. DOI: 10.1016/j.jmst.2025.01.018 15. Linares Arregui I., Alfredsson B. Elastic–plastic characterization of a high strength bainitic roller bearing steel-experiments and modelling. International Journal of Mechanical Sciences. 2010. Vol. 52. No. 10. pp. 1254–1268. DOI: 10.1016/j.ijmecsci.2010.06.001 16. Collins J., Piemonte M., Taylor M., Fellowes J., Pickering E. A rapid, open-source cct predictor for low alloy steels, and its application to compositionally heterogeneous material. Metals. 2023. Vol. 13. 1168. DOI: 10.3390/met13071168 17. Wang Z., Ren L., Zhang Yating, Zhou M., Zhang X. Realizing ultra-fast spheroidization of GCr15 bearing steel by analyzing the correlation of carbide dissolution law and pulsed electric current parameters through machine learning. Acta Metallurgica Sinica (English Letters). 2025. Vol. 38. pp. 1207–1218. DOI: 10.1007/s40195-025-01852-y 18. Bhadeshia H., Honeycombe R. Heat treatment of steels: hardenability. Steels: Microstructure and Properties. 2024. pp. 215–233. DOI: 10.1016/b978-0-44-318491-8.00014-9 19. Wong A., Bedekar V., Voothaluru R., Galindo Nava E., Galindo-Nava E. Modelling deformationinduced martensite transformation in high-carbon steels. Materials Science and Technology. 2023. Vol. 39. No. 15. pp. 2035–2049. DOI: 10.1080/02670836.2023.2187983 20. Guryev A. M., Voroshnin L. G., Kharaev Yu. P., Lygdenov B. D., Chernykh E. V. Cyclic thermal effects during thermal and thermochemical treatment of tool steels. Fundamentalnye problemy sovremennogo materialovedeniya. 2005. Vol. 2. No. 3. pp. 37–45. 21. Guryev A. M., Okolovich G. A., Cheprasov D. P., Zemlyakov S. A. Process of thermocyclic treatment of tool steel. Patent RF, No. 2131469. Applied: 06.05.1998. Published: 10.06.1999. 22. Guryev A. M., Kharaev Yu. P. Theory and practice of producing cast tools. Barnaul, 2005. 220 p. 23. Guryev A. M. On the development of a highly efficient technology for thermocyclic hardening of tool steels. Izvestiya vuzov. Chernaya metallurgiya. 2000. No. 2. pp. 25–27. 24. Chakraborty J., Chattopadhyay P. P., Bhattacharjee D., MANNA I. Microstructural refinement of bainite and martensite for enhanced strength and toughness in high-carbon low-alloy steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 2010. Vol. 41. No. 11. pp. 2871–2879. DOI: 10.1007/s11661-010-0288-1 25. Kalsi N. S., Sehgal R., Sharma V. S. Cryogenic treatment of tool materials: A review. Materials and Manufacturing Processes. 2010. Vol. 25. No. 10. pp. 1077–1100. DOI: 10.1080/10426911003720862 26. Wang P., Wang P., Xu Z., Zhang P. et al. The highest fatigue strength for steels. Acta Materialia. 2025. Vol. 289. 120888. DOI: 10.1016/j.actamat.2025.120888 27. Yin F., Yi Y., Yang C., Cheng G. Nanoengineering steel’s durability: creating gradient nanostructured spheroidal carbides and lath-shaped nano-martensite via ultrasonic shot peening. Nanoscale. 2024. Vol. 16. No. 44. pp. 20570-20588. DOI: 10.1039/d4nr02994a 28. Wang J., El-Fallah G., Chang X., Peng Y., Qing T. Achieving 2.7 GPa tensile strength in ultrastrong high-carbon steel through prolonged low-temperature tempering. Materials Characterization. 2024. Vol. 215. 114241. DOI: 10.1016/j.matchar.2024.114241 29. Lu S., Chiu L. Effect of different microstructures on surface residual stress of induction-hardened bearing steel. Metals. 2024. Vol. 14. No. 2. 201. DOI: 10.3390/met14020201 30. Fortini A., Bertarelli E., Cassola M., Merlin M. An industrial-scale study of the hardness and microstructural effects of isothermal heat treatment parameters on EN 100CrMo7 bearing steel. Applied Sciences (Switzerland). 2024. Vol. 14. No. 2. 737. DOI: 10.3390/app14020737 31. Nygaard J. R., Rawson M., Danson P., Bhadeshia H. Bearing steel microstructures after aircraft gas turbine engine service. Materials Science and Technology. 2014. Vol. 30. No. 15. pp. 1911–1918. DOI: 10.1179/1743284714y.0000000548 32. Solano Alvarez W., Pickering E. C., Bhadeshia H. K. D. H. Degradation of nanostructured bainitic steel under rolling contact fatigue. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing. 2014. Vol. 617. pp. 156–164. DOI: 10.1016/j.msea.2014.08.071 33. Zenin M. N., Ivanov S. G., Zemlyakov S. A., Deev V. B., Guryev M. A. Verification of a computer simulator of heat treatment modes for ShKh15 steel. Chernye Metally. 2025. No. 11. pp. 65–72. 34. Davis J. R. Classification and properties of tool and die steels. ASM Specialty Handbook–Tool Materials; ASM International: Materials Park, OH, USA, 1995. 501 p. 35. Buchmayr B., Kirkaldy J. S. Modeling of the temperature field, transformation behavior hardness, and mechanical response of low alloy steels during cooling from the austenite region. J. Heat Treat. 1990. Vol. 8. pp. 127–136. DOI: 10.1007/BF02831633 36. Callister W. D., Rethwisch D. G. Fundamentals of materials science and engineering. An Integrated Approach, 3rd ed.; John Wiley: Hoboken, NJ, 2008. 911 p. 37. ASM International 1991, ASM Handbook: Heat Treatment, Vol. 4, American Society for Metals Park, Ohio. 2173 p. |