Journals →  Обогащение руд →  2025 →  #5 →  Back

ОБОГАТИТЕЛЬНЫЕ ПРОЦЕССЫ
ArticleName Повышение эффективности применения сухой магнитной сепарации при обогащении магнетитовых руд
DOI 10.17580/or.2025.05.04
ArticleAuthor Пелевин А. Е.
ArticleAuthorData

Уральский государственный горный университет, г. Екатеринбург, РФ

Пелевин А. Е., профессор, д-р техн. наук, доцент, a-pelevin@yandex.ru

Abstract

В лабораторных условиях для титаномагнетитовой руды выполнена оценка возможности увеличения выхода хвостов сухой магнитной сепарации (СМС) до 30 % при массовой доле железа в них не более 6 %. Приведены результаты испытаний СМС при крупности руды Р95 = 6, 10 и 30 мм и схем СМС с последовательным и параллельным обогащением крупных и мелких классов крупности. Дано теоретическое обоснование большей эффективности СМС при использовании двухбарабанного сепаратора по сравнению с однобарабанным. Рекомендована схема с СМС при крупности Р95 = 10 мм с применением данного сепаратора с различными индукциями магнитного поля для верхнего и нижнего барабана.

keywords Сухая магнитная сепарация, выход хвостов, массовая доля железа, индукция магнитного поля, барабанный магнитный сепаратор, крупность питания, грохочение
References

1. Tsypin E. F., Ovchinnikova T. Yu., Efremova T. A. Efficiency of X-ray radiometric separation in preliminary concentration of ore. Gornyi Informatsionno-analiticheskiy Byulleten'. 2020. No. 3-1. pp. 431–442.
2. Ovchinnikova T. Yu., Efremova T. A., Tsypin E. F. Lower size grade limits in ore pretreatment using X-ray fluorescent separation. Gornyi Informatsionno-analiticheskiy Byulleten'. 2021. No. 11-1. pp. 328–337.
3. Shibaeva D. N., Kompanchenko A., Tereschenko S. V. Analysis of the effect of dry magnetic separation on the process of ferruginous quartzites disintegration. Minerals. 2021. Vol. 11. Iss. 8. DOI: 10.3390/min11080797
4. Shibaeva D. N., Asanovich D. A., Malodushev K. A., Shamshura D. A. Development of a software package for systematization and analysis of research results of iron ore preparation characteristics: goals, objectives, first data. Gornaya Promyshlennost'. 2024. No. 6. pp. 99–106.
5. Tang D., Wang F., Dai H., Lu M., Gong Zh. Influence of separation chamber shape in dry magnetic separator on the dispersion and separation of multiple magnetites. Minerals Engineering. 2021. Vol. 171. Iss. 1. DOI: 10.1016/j.mineng.2021.107130
6. Liu J., Xue Z., Dong Zh., Yang X., Fu Ya., Man X., Lu D. Multiphysics modeling simulation and optimization of aerodynamic drum magnetic separator. Minerals. 2021. Vol. 11, Iss. 7. DOI: 10.3390/min11070680
7. Xie Sh., Hu Zh., Lu D., Zhao Y. Dry permanent magnetic separator: Present status and future prospects. Minerals. 2022. Vol. 12, Iss. 10. DOI: 10.3390/min12101251
8. Wang F., Zhang Sh., Zhao Zh., Gao L., Tong X., Dai H. Investigation of the magnetic separation performance of a low-intensity magnetic separator embedded with auxiliary permanent magnets. Minerals Engineering. 2022. Vol. 178. DOI: 10.1016/j.mineng.2022.107399
9. Li X., Wang Yu., Lu D., Zheng X., Gao X. Optimization of airflow field for pneumatic drum magnetic separator to improve the separation efficiency. Minerals. 2021. Vol. 11, Iss. 11. DOI: 10.3390/min11111228
10. Pelevin A. E. Increasing the efficiency of iron ore raw materials beneficiation by separation in an increased magnetic field. Chernye Metally. 2022. No. 1, рр. 31–36.
11. Vaisberg L. A., Dmitriev S. V., Mezenin A. O. Controllable magnetic anomalies in mineral processing technologies. Gornyi Zhurnal. 2017. No. 10. pp. 26–32.
12. Pelevin A. E. Increasing the efficiency of iron-ore dressing by separation in an alternative magnetic field. Chernye Metally. 2021. No. 5. рр. 4–9.
13. Kornilkov S. V., Dmitriev A. N., Pelevin A. E., Yakovlev A. M. Separate processing of ore at Gusevogorsky deposit. Gornyi Zhurnal. 2016. No. 5. рр. 86–90.
14. Vaisberg L. A., Kononov O. V., Ustinov I. D. Fundamentals of geometallurgy. St. Petersburg: Russian Collection, 2020. 376 p.
15. Pelevin A. E., Kornilkov S. V., Dmitriev A. N., Bagazeev V. K. Quality improvement of magnetite concentrate in separate processing of different iron ore types and varieties. Gornyi Informatsionno-analiticheskiy Byulleten'. 2021. No. 11-1. pp. 306–317.
16. Pelevin A. E., Sytykh N. A., Cherepanov D. V. Particle size impact on dry magnetic separation efficiency. Gornyi Informatsionno-analiticheskiy Byulleten'. 2021, No. 11-1, рр. 293–305.
17. Korovnikov А. N., Trofimov V. А. Upon the possibilities of dry disintegrated materials classification process intensification. Obogashchenie Rud. 2017. No. 6. pp. 9–14.
18. Huang L., Pan M., Jiang H., et al. Kinematic characteristics of banana screen surface and operational parameter optimization for coal classification. International Journal of Coal Preparation and Utilization. 2020. Vol. 42, Iss. 5. pp. 1373–1392.
19. Geng R., Yu Ch., Wang Yi., Wang X., Zhang X., Li R. Effect of external moisture content on screening performance of vibrating flip-flow screen and circular vibrating screen. Minerals. 2023. Vol. 13, Iss. 5. DOI: 10.3390/min13050585
20. Baranov V. F. Designs of new operating copper processing plants: process types, equipment selection, industry trends. Obogashchenie Rud. 2021. No. 1. pp. 44–52.
21. Aleksandrova T. N., Chanturia A. V. Ore preparation process selection for ferruginous quartzites based on simulation modeling. Obogashchenie Rud. 2023. No. 1. pp. 3–9.
22. Baranov V. F. Projects which push the limits of efficient performance concepts of high-pressure grinding rollers. Gornyi Zhurnal. 2021. No. 11. pp. 33–38.
23. Yu J., An Ya., Gao P., Han Yu. High pressure grinding roll and magnetic separation for energy saving in grinding and simultaneously improving processing capacity: A case study of a magnetite ore. Mining, Metallurgy & Exploration. 2024. Vol. 41. pp. 1509–1522.
24. Chen K., Yin W. Differences in early rejection of gangue for low-grade iron ores with different textures from HPGR. Mineral Processing and Extractive Metallurgy Review. 2024. Vol. 45, Iss. 4. pp. 264–270.
25. Chen K., Yin W., Ding Ya., et al. Mineral liberation properties of iron ores with different grain sizes by particlebed breakage and traditional grinding. Mineral Processing and Extractive Metallurgy Review. 2024. Vol. 45, Iss. 7. pp. 814–823.
26. Gzogyan S. R., Gzogyan T. N., Mryasov M. R., Chakov V. N. Fine milling of Stoilensky oxidized quartzite. Gornyi Zhurnal. 2021. No. 6. pp. 54–60.
27. Li X., Wang Yu., Lu D., Zheng X. Influence of separation angle on the dry pneumatic magnetic separation. Minerals. 2022. Vol. 12, Iss. 10. DOI: 10.3390/min12101192
28. Tang D., Yan Yo., Tian X., et al. Separation mechanism of a pneumatic dry low-intensity drum magnetic separator and optimization of magnetic fields. Minerals Engineering. 2025. Vol. 231. DOI: 10.1016/j.mineng.2025.109451

Language of full-text russian
Full content Buy
Back