Journals →  Gornyi Zhurnal →  2025 →  #10 →  Back

HYDROGEOLOGY, GEOLOGY, SEARCH AND EXPLORATION OF MINERALS
ArticleName Tectonic model of the East Siberian Continental Margin
DOI 10.17580/gzh.2025.10.02
ArticleAuthor Zavarzina G. A., Kerimov V. Yu., Serikova U. S., Guryanov S. A.
ArticleAuthorData

All-Russia Scientific Research Institute for Geology and Mineral Resources of the Ocean,Saint-Petersburg, Russia

G. A. Zavarzina, Leading Researcher, Candidate of Geological and Mineralogical Sciences

 

Sergo Ordzhonikidze Russian State University for Geological Prospecting, Moscow, Russia1 ; Oil and Gas Institute of the Ministry of Science and Education of the Republic of Azerbaijan, Baku, Azerbaijan2
V. Yu. Kerimov, Head of Department1, Chief Researcher2, Doctor of Geological and Mineralogical Sciences, Professor, vagif.kerimov@mail.ru

 

Sergo Ordzhonikidze Russian State University for Geological Prospecting, Moscow, Russia
U. S. Serikova, Associate Professor, Doctor of Engineering Sciences
S. A. Guryanov, Senior Lecturer, Candidate of Geological and Mineralogical Sciences

Abstract

The sedimentary basins of the East Siberian continental margin, which are composed of the Cretaceous–Cenozoic clinoform deposits, have a complex geological structure. These basins are of significant interest in terms of hydrocarbon exploration. The presence of conflicting models regarding the geological structure of the sedimentary cover in the East Siberian and Chukchi Seas results in significant variations in the assessment of their hydrocarbon potential. Through an integrated interpretation of geological and geophysical data, a tectonic zoning of the East Siberian continental margin has been conducted, and a geological model has been proposed. This model suggests a strike-slip nature for the sedimentary basins, whose evolution is closely tied to the development of the Arctic Ocean. It is influenced by major tectonic events, such as the successive opening of the Canadian Basin, the Makarov–Podvodnikov Trough and the Eurasian Basin. Tectonic zoning used the structural map of the bottom surface of sedimentary cover, integrated structural and seismo-geological criteria, results of gravimetric and magnetic measurements, and the analysis of thickness maps of basic structural-formation zones. When making charts of tectonic zoning, within the test area, certain zones with similar structure of folded bottom surface, reflected in conservative fields, were identified. All identified tectonic elements feature individual development against the background of general large tectonic events in the region. There is a stable correlation between disjunctive dislocations on folded bottom surface and the interfaces of the main structural elements. Tectonic deformations in the sedimentary cover of the East Siberian continental margin are correlated with the zones of strike-slip processes which contributed to the development of basic structures.

keywords Continental platform, East Siberian Sea, tectonics, sedimentary cover, pullapart basin, strike-slip zone
References

1. Drachev S. S. Tectonic setting, structure and petroleum geology of the Siberian Arctic offshore sedimentary basins. Arctic Petroleum Geology. Geological Society Memoir. London : Geological Society, 2011. Vol. 35. pp. 369–394.
2. Nikishin A. M., Startseva K. F., Verzhbitsky V. E., Cloetingh S., Malyshev N. A. et al. Sedimentary Basins of the East Siberian Sea and the Chukchi Sea and the Adjacent Area of the Amerasia Basin: Seismic Stratigraphy and Stages of Geological History. Geotectonics. 2019. Vol. 53, No. 6. pp. 635–657.
3. Luchitskaya M. V., Moiseev A. V., Sokolov S. D., Tuchkova M. I., Sergeev S. A. et al. Marginal continental and within-plate neoproterozoic granites and rhyolites of Wrangel Island, Arctic Region. Geotectonics. 2017. Vol. 51, No. 1. pp. 17–39.
4. Sokolov S. D., Tuchkova M. I., Moiseev A. V., Verzhbitskii V. E., Malyshev N. A. et al. Tectonic zoning of Wrangel Island, Arctic Region. Geotectonics. 2017. Vol. 51, No. 1. pp. 3–16.
5. Vernikovsky V. A., Dobretsov N. L., Metelkin D. V., Matushkin N. Yu., Kulakov I. Yu. Concerning tectonics and the tectonic evolution of the Arctic. Russian Geology and Geophysics. 2013. Vol. 54, No. 8. pp. 838–858.
6. Daragan-Sushchova L. A., Sobolev N. N., Petrov E. O., Grinko L. R., Petrovskaya N. A. et al. To substantiation of stratigraphy binding of the key seismic horizons on the East-Arctic Shelf and in the area of Central Arctic uplifts. Regionalnaya geologiya i metallogeniya. 2014. No. 58. pp. 5–21.
7. Verba M. L. Paleozoic section of the sedimentary cover of the East Siberian Sea’s northern outskirts and its importance to petroleum potential assessment. Neftegazovaya geologiya. Teoriya i praktika. 2016. Vol. 11, No. 4. DOI: 10.17353/2070-5379/46_2016
8. Petrovskaya N. A., Savishkina M. A. Sedimentary cover of the Eastern Arctic shelf—Comparison of seismic complexes and main unconformity. Neftegazovaya geologiya. Teoriya i praktika. 2014. Vol. 9, No. 3. DOI: 10.17353/2070-5379/39_2014
9. Kosko M. K., Sobolev N. N., Korago E. A., Proskurnin V. F., Stolbov N. M. Geology of Novosibirskian islands—A basis for interpretation of geophysical data on the Eastern Arctic shelf of Russia. Neftegazovaya geologiya. Teoriya i praktika. 2013. Vol. 8, No. 2. DOI: 10.17353/2070-5379/17_2013
10. Craddock W. H., Houseknecht D. W. Cretaceous–Cenozoic burial and exhumation history of the Chukchi shelf, offshore Arctic Alaska. AAPG Bulletin. 2016. Vol. 100, No. 1. pp. 63–100.
11. Kosko M. K., Ushakov V. I. (Eds.). The Wrangel Island: Geological Structure, Mineralogy, Geoecology. Saint-Petersburg : VNIIOkeangeologiya, 2003. 137 p.
12. Rekant P. V., Petrov O. V., Prishchepenko D. V. The history of the formation of southern East-Siberian sea shelf thrust-and-fold zone. Results of the comprehensive seismic and geological data interpretation. Regionalnaya geologiya i metallogeniya. 2020. No. 82. pp. 35–59.
13. Vinogradov V. A., Gusev E. A., Rekant P. V., Pyatkova M. N. Taimyr–Alaskan Arctic region—Formation of sedimentary cover from the point of view of structural relations in the shelf–ocean system. Neftegazovaya geologiya. Teoriya i praktika. 2016. Vol. 11, No. 1. DOI: 10.17353/2070-5379/10_2016
14. Zavarzina G. A., Shapabaeva D. S., Zakharova O. A. Newly acquired data on the geologic structure and hydrocarbon potential in the eastern part of the East Siberian Sea Shelf. Russian Geology and Geophysics. 2023. Vol. 64, No. 7. pp. 847–859.
15. Lavrenova E. A., Kerimov V. Yu., Gorbunov A. A. Geodynamic zoning and structural forms within sedimentary mantle of the Eastern Arctic Seas of Russia. Gornyi Zhurnal. 2024. No. 10. pp. 31–40.
16. Gordadze G. N., Kerimov V. Yu., Gaiduk A. V., Giruts M. V., Lobusev M. A. et al. Hydrocarbon biomarkers and diamondoid hydrocarbons from late Precambrian andLower Cambrian rocks of the  Katanga Saddle (Siberian Platform). Geochemistry International. 2017. Vol. 55, No. 4. pp. 360–366.
17. Kerimov V. Yu.,OsipovA. V.,Mustaev R. N., Minligalieva L. I., Guseynov A. A. Conditions of formation and development of the void space at great depths. Neftyanoe khozyaystvo. 2019. No. 4. pp. 22–27.
18. Kerimov V. Yu., Osipov A. V., Mustaev R. N., Monakova A. S. Modeling of petroleum systems in regions with complex geological structure. Geomodel 2014 : Proceedings of the 16th EAGE Science and Applied Research Conference on Oil and Gas Geological Exploration and Development. Gelendzhik, 2014. DOI: 10.3997/2214-4609.20142245
19. Dzyublo A. D., Shnip O. A., Sidorov V. V., Agadzhanyants I. G. On the features of the structure and possible oil and gas potential of the lower structural level of the shelf of the North-East of Russia. Nauchnyi zhurnal Rossiyskogo gazovogo obshchestva. 2023. No. 3(39). pp. 20–31.
20. Bogoyavlenskiy V. I., Kishankov A. V., Kazanin A. G., Kazanin G. A. Dangerous gassaturated objects in the World Ocean: The East Siberian sea. Arktika: Ekologia i Ekonomika. 2022. Vol. 12, No. 2(46). pp. 158–171.
21. Kazanin G. S., Barabanova Yu. B., Kirillova-Pokrovskaya T. A., Chernikov S. F., Pavlov S. P. et al. Tectonics and hydrocarbon potential of the East Siberian Sea. Neft. Gaz. Novatsii. 2018. No. 2. pp. 9–15.
22. Kazanin A. G. Problems of arctic hydrocarbon development in the context of modern global challenges: Development potential and industry strategies. Upravlencheskoe konsultirovanie. 2024. No. 5(185). pp. 109–122.
23. Kerimov V. Yu., Mustaev R. N., Etirmishli G. D., Yusubov N. P. Influence of modern geodynamic processes on the structure and tectonics of the Black Sea–Caspian Region. Eurasian Mining. 2021. No. 1. pp. 3–8.
24. Doré A. G., Lundin E. R., Gibbons A., Sømme T. O., Tørudbakken B. O. Transform margins of the Arctic: A synthesis and re-evaluation. Transform Margins: Development, Controls and Petroleum Systems : Special Publications. London : Geological Society, 2016. Vol. 431. pp. 63–94.
25. Schaaf N. W., Osmundsen P. T., Van der Lelij R., Schönenberger J., Lenz O. K. et al. Tectono-sedimentary evolution of the eastern Forlandsundet Graben, Svalbard. Norwegian Journal of Geology. 2021. Vol. 100. DOI: 10.17850/njg100-4-4
26. Moore T. E., Dumitru T. A., Adams K. E., Witebsky S. E., Harris A. G. Origin of the Lisburne Hills–Herald Arch structural belt: Stratigraphic, structural, and fission-track evidence from the Cape Lisburne area, northwestern Alaska. Tectonic Evolution of the Bering Shelf–Chukchi Sea–Artic Margin and Adjacent Landmasses : Special Paper 360. Boulder : Geological Society of America, 2002. pp. 77–109.
27. Miller E. L., Toro J., Gehrels G., Amato J. M., Prokopiev A. et al. New insights into Arctic paleogeography and tectonics from U–Pb detrital zircon geochronology. Tectonics. 2006. Vol. 25, Iss. 3. DOI: 10.1029/2005TC001830
28. Wang K., Shi X., Yao Z., Bosin A. A., Hu L. Sediment sources and transport pathways on shelves of the Chukchi and East Siberian Seas: Evidence from the heavy minerals and garnet geochemistry. Polar Science. 2022. Vol. 33. ID 100873.
29. Kim J., Soerensen A. L., Jeong H., Jeong H., Kim E. et al. Cross-shelf processes of terrigenous organic matter drive mercu ry speciation on the east siberian shelf in the Arctic Ocean. Environmental Pollution. 2024. Vol. 343. ID 123270.
30. Chen M., Kim J.-H., Lee Y. K., Lee D.-H., Jin Y. K. et al. Subsea permafrost as a potential major source of dissolved organic matter to the East Siberian Arctic Shelf. Science of The Total Environment. 2021. Vol. 777. ID 146100.

Language of full-text russian
Full content Buy
Back