Journals →  Chernye Metally →  2025 →  #10 →  Back

Metal Science and Heat Treatment
ArticleName Effect of post-weld heat treatment of steel pipe billets on the performance of bored precast piles operated in permafrost soils
DOI 10.17580/chm.2025.10.10
ArticleAuthor S. A. Yalygin, B. S. Ermakov, O. V. Shvetsov, N. I. Golikov, S. A. Vologzhanina
ArticleAuthorData

Gazpromneft Scientific and Technical Center, St. Petersburg, Russia

S. A. Yalygin, Director of Technological Development Programs “Capital Construction”

 

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
B. S. Ermakov, Dr. Eng., Head of the Materials Resources Laboratory, e-mail: ermakov_bs@spbstu.ru
O. V. Shvetsov, Cand. Eng., Deputy Head of Laboratory of Materials Resource

 

V. P. Larionov Institute of the Physical-Technical Problems of the North, Siberian Branch of the Russian Academy of Sciences, Yakutsk, Russia
N. I. Golikov, Dr. Eng., Chief Researcher, Welding and Metallurgy Technologies Department

 

Empress Catherine II St. Petersburg Mining University, St. Petersburg, Russia
S. A. Vologzhanina, Dr. Eng., Prof., Dept. of Materials Science and Technology of Art Products, e-mail: vologzhanina_sa@pers.spmi.ru

Abstract

Abstract: The development of hydrocarbon production sites in permafrost zones and the need to reduce costs require a more thorough study of the requirements for the materials and structures used. An analysis of regulatory and technical documentation revealed that some of these requirements are unreasonably high. Thus, SP 16.13330.2020 specifies that when manufacturing bored precast foundation piles, it is necessary to ensure an impact toughness level of welded joints obtained by high-frequency welding of at least 34 J/cm2 at a temperature of -60 °C. This requires extensive post-weld heat treatment of the pipes from which the piles are made, dramatically increasing the cost of the structure and leading to higher construction costs. It should be noted that GOST 20295, which is used to manufacture pipes for the piles, and similar regulatory and technical documents do not contain such requirements. An analysis of the mechanical properties and residual welding stresses in the pipes with and without heat treatment was conducted. Field tests of bored precast piles installed in the permafrost zone were also conducted. The conducted studies allow to conclude that the requirement for heat treatment of the pipes is excessive and should be eliminated.
This work was carried out as part of a state assignment from the Ministry of Science and Higher Education of the Russian Federation (Topic No. FSEG-2024-0009: Development of models for the degradation of the performance properties of metallic and composite materials for construction in permafrost soils).

keywords Bored precast piles for permafrost soils, mechanical properties, volumetric post-weld heat treatment, residual welding stresses
References

1. Kudryavtseva O. V., Serebrennikov E. V. Development prospects of the Russian oil and gas production industry in the context of the energy transition and the formation of a low-carbon economy model. Ekonomicheskoe vozrozhdenie Rossii. 2022. No. 2 (72). pp. 137–143. DOI: 10.37930/1990-9780-2022-2-72-137-143
2. Zhdaneev O. V. Ensuring technological sovereignty of the fuel and energy complex industries of the Russian Federation. Zapiski Gornogo instituta. 2022. Vol. 258. pp. 1061–1078. DOI: 10.31897/PMI.2022.107
3. Sukhorukova N. N. Progress in response to challenges. Nauka i tekhnologii truboprovodnogo transporta nefti i nefteproduktov. 2023. Vol. 13. No. 3. pp. 200–211.
4. Pashkevich N. V., Khloponina V. S., Pozdnyakov N. A., Avericheva A. A. Analysis of the problems of reproduction of the mineral resource base of scarce strategic minerals. Zapiski Gornogo instituta. 2024. Vol. 270. pp. 1004–1023.
5. Egorov A. S., Prischepa O. M. Deep structure, tectonics and petroleum potential of the western sector of the Russian Arctic. Journal of Marine Science and Engineering. 2021. Vol. 9, Iss. 3. 258.
6. Gazprom: official company website. Available at: https://www.gazprom.ru/about/production/extraction (accessed: 12.03.2025).
7. Cherepovitsyn A. E., Tsvetkov P. S., Evseeva O. O. Critical analysis of methodological approa ches to assessing the sustainability of Arctic oil and gas projects. Zapiski Gornogo instituta. 2021. Vol. 249. pp. 463–479. DOI: 10.31897/PMI.2021.3.15
8. Prischepa O. M. , Nefedov Y. V. Arctic shelf oil and gas prospects from lower-middle paleozoic sediments of the timan–pechora oil and gas province based on the results of a regional study. Resources. 2022. Vol. 11, Iss. 1. 3. DOI: 10.3390/resources11010003
9. Shammazov I. A., Batyrov A. M. , Sidorkin D. I. Study of the effect of cutting frozen soils on the supports of above-ground trunk pipelines. Applied Sciences. 2023. Vol. 13. pp. 31–39. DOI: 10.3390/app13053139
10. Mammadov A. T., Babaev A. I., Guseynov M. Ch., Musurzaeva B. B. Analysis of causes of casing pipe coupling failure during oil well drilling and development of recommendations for its prevention. Chernye Metally. 2025. No. 1. pp. 42-48.
11. Buslaev G., Tsvetkov P., Lavrik A., Kunshin A., Loseva E., Sidorov D. Ensuring the sustainability of Arctic industrial facilities under conditions of global climate change. Resources. 2021. Vol. 10, Iss. 12. pp. 1–15. DOI: 10.3390/resources10120128
12. Kunshin A., Dvoynikov M., Timashev E., Starikov V. Development of monitoring and forecasting technology energy efficiency of well drilling using mechanical specific energy. Energies. 2022. Vol. 15. 7408. DOI: 10.3390/en15197408
13. Pritula V. V. Corrosion situation on Russian gas and oil pipelines and their industrial safety. Truboprovodny transport: teoriya i praktika. 2015. No. 2 (48). pp. 6–10.
14. Romasheva N., Dmitrieva D. Energy resources exploitation in the Russian Arctic: challenges and prospects for the sustainable development of the ecosystem. Energies. 2021. Vol. 14. 8300. DOI: 10.3390/en14248300
15. Syas’ko V., Shikhov A. Assessing the state of structural foundations in permafrost regions by means of acoustic testing. Appl. Sci. 2022. Vol. 12. 2364. DOI: 10.3390/app12052364
16. Boyarintsev A. V. Representative analysis of the experience of building foundations on permafrost soils. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Stroitelstvo i arkhitektura. 2019. Vol. 10, No. 1. pp. 57–68. DOI: 10.15593/2224-9826/2019.1.06
17. Antipina D. A. Construction of fuel and energy complex facilities in areas of ice lenses and rocky soils. Ekspozitsiya Neft Gas. 2024. No. 9 (110). pp. 40-46. DOI: 10.24412/2076-6785-2024-9-40-46
18. Presnov O. M., Melikhov V. P., Zaytsev S. A., Slivina D. M. Erection of piles in permafrost conditions. Mezhdunarodny nauchno-issledovatelskiy zhurnal. 2022. No. 2–1 (116). pp. 41-43. DOI: 10.23670/IRJ.2022.116.2.006
19. Alekseev A. G., Sazonov P. M., Poverenny Yu., Zelenin D. A., Fefelov A. V., Saitov A. V. Improvement of the design of steel piles in permafrost soils. Promyshlennoe i grazhdanskoe stroitelstvo. 2022. No. 1. pp. 34–38. DOI: 10.33622/0869-7019.2022.01.34-38
20. Yakshibaev I. N., Yakshibaev A. N., Nedoseko I. V. et al. Improving the performance of pile foundations on permafrost heaving soils. Problemy sbora, podgotovki i transporta nefti i nefteproduktov. 2023. No. 5 (145). pp. 63–74. DOI: 10.17122/ntj-oil-2023-5-63-74
21. Alekseev A. G., Rabinovich M. V. Improvement of the regulatory framework in the direction of basis and foundations on permafrost soils. Vestnik NITs Stroitelstvo. 2021. No. 2 (29). pp. 5–12. DOI: 10.37538/2224-9494-2021-2(29)-5-12
22. Kakharov Z. V., Khamroev A. Yu. Modern technologies of pile foundation construction. Innovatsionnye nauchnye issledovaniya. 2022. No. 10 (22). pp. 32–39. DOI: 10.5281/zenodo.7236486
23. Alekseev A. G., Rabinovich M. V. Improvement of the regulatory framework in the direction of basis and foundations on permafrost soils. Vestnik NITs Stroitelstvo. 2021. No. 2 (29). pp. 5–12. DOI: 10.37538/2224-9494-2021-2(29)-5-12
24. Shaposhnikov N. O., Yalygin S. A., Ermakov B. S., Shvetsov O. V., Ermakov S. B., Golikov N. I., Sleptsov O. I., Klochkov Yu. S. Analysis of reliability and performance of bored precast piles in the development of oil fields in the permafrost zone. Izvestiya vuzov. Neft i gaz. 2024. No. 4 (166). pp. 96-118. DOI: 10.31660/0445-0108-2024-4-96-118
25. Velikotsky M.A. Corrosive activity of soils in various natural zones. Vestnik Moskovskogo universiteta. Seriya: Georgafiya. 2010. No. 1. pp. 21–27.
26. Pantyukhova K. N., Negrov D. A., Burgonova O. Yu., Putintsev V. Yu. Study of causes of the decrease in the mechanical characteristics of hot-deformed bends made of 09G2S steel. Omskiy nauchny vestnik. 2019. No. 1 (163). pp. 11–16. DOI: 10.25206/1813-8225-2019-163-11-16
27. Moskvichenok D. V. Biogeochemical features of soils of the Messoyakha river basin (Tazovsky district of the Yamalo-Nenets Autonomous Okrug). Vestnik TyumGU. Ekologiya i prirodopolzovanie. 2016. Vol. 2, No. 2. pp. 8–21. DOI: 10.21684/2411-7927-2016-2-2-8-21
28. Pegin P. A., Filimonov D. S. Features of design and construction of buildings in seismically hazardous areas with permafrost soils. Izvestiya Peterburgskogo universiteta putey soobshcheniya. 2023. No. 4. pp. 878–890.
29. Yalygin S. A., Ermakov B. S., Stolyarov A. V., Koynov E. G., Shvetsov O. V., Shaposhnikov N. O.,
Tokarev V. O., Golikov N. I. Effect of post-weld heat treatment on the performance properties of 09G2S steel used for the manufacture of bored precast piles. PRO Neft. 2024. Vol. 9, No. 1. pp. 173-182. DOI: 10.51890/2587-7399-2024-9-1-173-182
30. GOST 20295-85. Steel Welded pipes for main gas-and-oil pipelines. Specifications. Introduced: 01.01.1987.
31. GOST 10704-91. Electrically welded steel line-weld tubes. Range. Introduced: 01.01.1993.
32. Agmet O. A., Stepanov P. P., Khlybov S., Efron L. I., Zharkov S. V. Features of microstructure formation in welded pipe joints during high-frequency welding and subsequent local heat treatment. Chernaya metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2022 Vol. 78. No. 2. pp.135–149. DOI: 10.32339/0135-5910-2022-2-135-149
33. Tkachuk M. A., Bagmet O. A., Stepanov P. P. Development of modes of local heat treatment of welded seams of medium diameter pipes welded with high-frequency currents. Stal. 2016. No. 3. pp. 54–59.
34. Goncharov N. G., Yushin A. A., Kolesnikov O. I., Nesterov G. V., Azarin A. I. Study of the influence of heat treatment on the metallophysical properties of weld metal. Nauka i tekhnologii truboprovodnogo transporta i nefteproduktov. 2021. No. 11. pp. 412–419. DOI: 10.28999/2541-9595-2021-11-4-412-419
35. Kolikov A. P., Ti S. O., Sidorova T. Yu. Experimental and mathematical methods for calculation of residual stresses in production of welded pipes. Chernye Metally. 2021. No. 7. pp. 41–49.
36. Pozhedanov S. Yu., Fedoseeva I. P. Features of design and construction of buildings and structures on structurally unstable soils. Vestnik nauki. 2024. No. 10 (79). pp. 906–916.
37. Presnov O. M., Ivanova L. A., Bychkovskaya S. I., Lomova D. A. Pile on permafrost soil. Ekonomika stroitelstva. 2022. No. 1. pp. 41–45.
38. GOST R ISO 3183–2009. Steel pipes for pipelines petroleum and natural gas industries. General specifications. Introduced: 01.01.2011.
39. GOST R 54153–2010. Steel. Method of atomic emission spectral analysis. Introduced: 01.01.2012. 40. GOST 1497–84. Metals. Methods of tension test. Introduced: 01.01.1986.
41. GOST 6996–66. Welded joints. Methods of mechanical properties determination. Introduced: 01.01.1986.
42. GOST 2999–75. Metals and alloys. Vickers hardness test by diamond pyramid. Introduced: 01.07.1976.
43. GOST 9454–78. Metals. Method for testing the impact strength at low, room, and high temperature. Introduced: 01.01.1979.
44. GOST 19281–2014. High strength rolled steel. General specification. Introduced: 01.01.2015.

Language of full-text russian
Full content Buy
Back