Journals →  Gornyi Zhurnal →  2025 →  #8 →  Back

PROCESSING AND COMPLEX USAGE OF MINERAL RAW MATERIALS
ArticleName Digital solutions in improvement of mineral processing technologies
DOI 10.17580/gzh.2025.08.08
ArticleAuthor Nikitin R. M., Ostapenko S. P., Fomin A. V., Biryukov V. V.
ArticleAuthorData

Mining Institute, Kola Science Center, Russian Academy of Sciences, Apatity, Russia

R. M. Nikitin, Academic Secretary, Candidate of Engineering Sciences, r.nikitin@ksc.ru
S. P. Ostapenko, Leading Researcher, Candidate of Engineering Sciences
A. V. Fomin, Senior Researcher, Candidate of Engineering Sciences

 

Murmansk Arctic University, Apatity, Russia
V. V. Biryukov, Senior Lecturer

Abstract

Modern approaches to optimizing process flowsheets of mineral processing are inseparable from technological improvement and digitalization of beneficiation practices. Essentiality of digital transformation of mining and processing is an evident and governing objective and trend in mining science. A methodical approach to numerical modeling of gravity separation of minerals is developed using the methods of computational fluid dynamics. The approach is implemented in modeling a separation process in hydraulic separators, hydrocyclones and spiral separators, and in research of modeling table concentration. The proposed approach allows studying various hydrodynamic and kinetic parameters of separation of mineral particles in effective volume of separators, predicting beneficiation indicators and validating design factors and separation modes for processing equipment. As a result of the accomplished research, a methodological framework is developed for the computer modeling of selective separation for a wide range of minerals. A simulation model of a segment of a ferruginous quartzite processing section is designed. The modeling result is the mathematical relationships between the data of serial process steps, in real time, to maintain material balance of a process flow diagram. The presented examples of solutions obtained using various digital technologies for the analysis and enhancement of efficiency of processing technologies for mineral raw materials of the Kola mining sector were implemented at the Mining Institute, KSC RAS. Some efforts are undertaken toward creation of resource-saving technologies for natural and manmade mineral processing using digital methods and information systems for solving problems of mining and processing practice.

keywords Mineral raw material, numerical modeling, spiral separation, segregation efficiency, molecular dynamics, fine-dispersion mineral particles, wetting angle, magnetic susceptibility, mineral processing flow diagram
References

1. Khopunov E. A. Digitization of subsoil use technologies. Izvestiya vuzov. Gornyi zhurnal. 2021. No. 2. pp. 70–78.
2. Gritsayuk Ya. O., Osipova V. A. Digital transformation of beneficiation processes. KIP i avtomatika: obsluzhivanie i remont. 2021. No. 1. pp. 29–31.
3. Van Der Horn E., Mahadevan S. Digital Twin: Generalization, characterization and implementation. Decision Support Systems. 2021. Vol. 145. ID 113524.
4. Lukichev S. V., Nagovitsyn O. V. Modeling objects and processes within a mining technology as a framework for a system approach to solve mining problems. Journal of Mining Science. 2018. Vol. 54, No. 6. pp. 1041–1049.
5. Gromov E. V., Biryukov V. V., Zotov A. M. Solving problems in ore mining and processing using information technologies. Journal of Mining Science. 2018. Vol. 54, No. 6. pp. 995–1003.
6. Rylnikova M. V., Strukov K. I., Radchenko D. N., Esina E. N. Digital transformation: A prerequisite and foundation for sustainable development of mining operations. Gornaya Promyshlennost. 2021. No. 3. pp. 74–78.
7. Nagovitsyn O. V. Development of mining and geological information system in the present-day situation in the Russian mining industry. Gornaya Promyshlennost. 2023. No. 5S. pp. 35–40.
8. Pedlosky J. Geophysical Fluid Dynamics. 2nd ed. New York : Springer, 1987. 710 p.
9. Batchelor G. K. An Introduction to Fluid Dynamics. Cambridge : Cambridge University Press, 1967. 634 p.
10. Nigmatulin R. I. Fundamentals of Mechanics of Heterogeneous Media. Moscow : Nauka, 1978. 336 p.
11. Versteeg H., Malalasekera W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. 2nd. Harlow : Pearson Education, 2007. 503 p.
12. Gosman A. D., Ioannides E. Aspects of computer simulation of liquid-fueled combustors. Journal of Energy. 1983. Vol. 7, No. 6. pp. 482–490.
13. Cundall P. A., Strack O. D. L. A discrete numerical model for granular assemblies. Géotechnique. 1979. Vol. 29, Iss. 1. pp. 47–65.
14. Skorokhodov V. F., Khokhulya M. S., Opalev A. S., Biryukov V. V., Nikitin R. M. Computational fluid dynamics methods in research and analysis of mineral separation. Journal of Mining Science. 2013. Vol. 49, No. 3. pp. 507–513.
15. Skorokhodov V. F., Khokhulya M. S., Opalev A. S., Fomin A. V., Biryukov V. V. et al. Applications of computer simulation for hydrodynamics of multiphase media in studying separation processes in mineral dressing. Journal of Mining Science. 2019. Vol. 55, No. 2. pp. 304–318.
16. Limbach H. J., Arnold A., Mann B. A., Holm C. ESPResSo—An extensible simulation package for research on soft matter systems. Computer Physics Communications. 2006. Vol. 174, Iss. 9. pp. 704–727.
17. Phillips J. C., Hardy D. J., Maia J. D. C., Stone J. E., Ribeiro J. V. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of Chemical Physics. 2020. Vol. 153, Iss. 4. ID 044130.
18. Liu J., Wang F., Chen J., Xu L., Cao Q. Insights into the effect of magnetic interactions on the magnetization process of matrices in high gradient magnetic separation. Minerals Engineering. 2021. Vol. 174. ID 107269.
19. Osipova N. V. Model of stabilization of the quality of iron-ore concentrate in the process of magnetic separation with the use of extreme regulation. Metallurgist. 2018. Vol. 62, No. 3-4. pp. 303–309.
20. Prosvirnin V. I., Masyutkin E. P., Masyutkin D. E. Refined mathematical model of coagulation of magnetic particles in curvilinear motion. Sovremennye naukoemkie tekhnologii. 2017. No. 9. pp. 58–63.
21. Yamashita A. S., Thivierge A., Euzébio T. A. M. A review of modeling and control strategies for cone crushers in the mineral processing and quarrying industries. Minerals Engineering. 2021. Vol. 170. ID 107036.
22. Padhi M., Mangadoddy N., Mainza A. N., Anand M. Study on the particle interaction in a hydrocyclone classifier with multi-component feed blend at a high solids content. Powder Technology. 2021. Vol. 393. pp. 380–396.
23. Noome Z. M., Le Roux J. D., Padhi R. Optimal control of mineral processing plants using constrained model predictive static programming. Journal of Process Control. 2023. Vol. 129. ID 103067.
24. Aleksandrova T. N., Chanturia A. V. Ore preparation process selection for ferruginous quartzites based on simulation modeling. Obogashchenie Rud. 2023. No. 1. pp. 3–9.
25. Blyudenov A. P., Makushev S. Yu., Cherepanov D. V., Schneider D. A. Digitalization of a processing plant. Gornaya Promyshlennost. 2023. No. 3. pp. 15–18.
26. McCoy J. T., Auret L. Machine learning applications in minerals processing: A review. Minerals Engineering. 2019. Vol. 132. pp. 95–109.
27. Koh E. J. Y., Amini E., Gaur S., Maquieira M. B., Heck C. J. et al. An automated machine learning (AutoML) approach to regression models in minerals processing with case studies of developing industrial comminution and flotation models. Minerals Engineering. 2022. Vol. 189. ID 107886.
28. Gomez-Flores A., Ilyas S., Heyes G. W., Kim H. A critical review of artificial intelligence in mineral concentration. Minerals Engineering. 2022. Vol. 189. ID 107884.
29. Khokhulya M. S., Fomin A. V. The use of computational fluid dynamics methods in the gravity separation of various mineral raw materials. MIAB. 2017. Special issue 23. pp. 474–482.
30. Fomin A. V., Khokhulya M. S., Opalev A. S., Lvov V. V. The use of computational fluid dynamics methods in the gravity separation of various mineral raw materials. MIAB. 2017. Special issue 23. pp. 465–473.
31. Khokhulya M. S., Fomin A. V. Research into regularities in segregation of iron ore raw materials on screw devices using numerical simulation. Obogashchenie Rud. 2023. No. 1. pp. 22–28.
32. Kondratev S. A. Selecting collecting agents for flotation. Journal of Mining Science. 2022. Vol. 58, No. 5. pp. 796–811.
33. Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. Journal of Molecular Graphics. 1996. Vol. 14, Iss. 1. pp. 33–38.
34. Ozkan A. Determination of the critical surface tension of wetting of minerals treated with surfactants by shear flocculation approach. Journal of Colloid and Interface Science. 2004. Vol. 277, Iss. 2. pp. 437–442.
35. Ostapenko S. P., Opalev A. S. Methodical approach to studies of magnetic interaction of fine particles in an aqueous suspension using computer simulation. Gornaya Promyshlennost. 2023. No. 5S. pp. 142–149.
36. Fu Y., Aldrich C. Deep learning in mining and mineral processing operations: A review. IFAC-PapersOnLine. 2020. Vol. 53, Iss. 2. pp. 11920–11925.
37. Ohenoja M., Koistinen A., Hultgren M., Remes A., Kortelainen J. et al. Continuous adaptation of a digital twin model for a pilot flotation plant. Minerals Engineering. 2023. Vol. 198. ID 108081.
38. Zhang D., Gao X. A digital twin dosing system for iron reverse flotation. Journal of Manufacturing Systems. 2022. Vol. 63. pp. 238–249.

Language of full-text russian
Full content Buy
Back