Journals →  Chernye Metally →  2025 →  #6 →  Back

Refractory Materials
ArticleName Assessment of the effect of microsilica additive on the properties of refractory materials for steelmaking ladles
DOI 10.17580/chm.2025.06.04
ArticleAuthor M. V. Glazyev, V. Yu. Bazhin, I. A. Glazyeva
ArticleAuthorData

Empress Catherine the Great Saint Petersburg Mining University, St. Petersburg, Russia
M. V. Glazyev, Cand. Eng., Assistant, Dept. of Metallurgy, e-mail: glazev_mv@pers.spmi.ru
V. Yu. Bazhin, Dr. Eng., Prof., Head of the Dept. of Metallurgy, e-mail: bazhin-alfoil@mail.ru
I. A. Glazyeva, Degree Cand. Eng., e-mail: ira_94_94@mail.ru

Abstract

Currently, the operation of pouring devices and ladles in the metallurgical industry is attended with a number of challenges associated with the presence of impurities in steel with a significant temperature difference during pouring and casting of metal. These factors can significantly degrade the quality of steel, reduce the service life of equipment and increase the cost of its repair and replacement. Rapid changes in temperature cause local thermal stresses in refractory materials, which leads to the formation of cracks in the lining and metal parts of the equipment, as well as to deformation due to uneven heating and cooling, which disrupts the geometry of the equipment and reduces its functionality. Silicon production waste in the form of small particles of SiO2 (microsilica) are a promising material for modifying the structure of refractory materials due to their unique properties. The prospects for the use of SiO2 in refractory materials used for steelmaking ladles are considered. The effect of microsilica on the physical, mechanical and thermal characteristics of refractories, as well as the advantages of its use in high-temperature steelmaking processes, have been studied. It has been found that adding up to 4-6% SiO2 to the composition of refractory products increases strength, reduces porosity, and decreases the proportion of the decarburized layer and oxidation. Testing of samples has shown that the use of SiO2 in steelmaking conditions contributes to the formation of more stable and dense structures in refractory materials, which increases their resistance to thermal and chemical actions. It is assumed that the strengthening effect is achieved due to the polymorphic transition of SiO2, which increases the area of the developed surface and ensures contact adhesion of particles to each other, and when interacting with carbon at temperatures above 1500 °C, silicon carbides are formed, which are more resistant to oxidation. The use of microsilica in refractory materials for steelmelting ladles will reduce the frequency of repairs and periods of lining replacement, as well as increase the productivity of steelmaking, reduce costs by increasing their service life.

keywords Steelmaking, refractory material, microsilica, lining, metallurgical furnace, porosity, strength, refractory resistance, oxidation, temperature difference
References

1. Nemchinova N. V., Mineev G. G., Tyutrin A. A. Utilization of dust from silicon production. Steel in Translation. 2017. Vol. 47. pp. 763–767. DOI: 10.3103/S0967091217120087
2. Glaziev M. V. High-temperature phase interactions during the utilization of finely dispersed waste from the production of metallurgical silicon: Dissertation … of Candidate of Engineering Sciences. St. Petersburg, 2022. 118 p.
3. Kotova O. B., Ustyugov V. A., San Sh., Ponaryadov A. V. Obtaining mullite: phase transformations of kaolinite, thermodynamics of the process. Zapiski Gornogo instituta. 2022. Vol. 254. pp. 129-135. DOI: 10.31897/PMI.2022.43
4. Gembitskaya I. M., Gvozdetskaya M. V. Transformation of grains of technological raw materials in the production of fine powders. Zapiski Gornogo instituta. 2021. Vol. 249. pp. 401–407. DOI: 10.31897/ PMI.2021.3.9
5. Litvinenko V. S., Petrov E. I., Vasilevskaya D. V. et al. Assessment of the role of the state in the management of mineral resources. Zapiski Gornogo instituta. 2023. Vol. 259. pp. 95–111. DOI: 10.31897/PMI.2022.100
6. Vologin A. S., Tyutrin A. A. Gas cleaning dust from silicon production: areas of application. Molodezhny vestnik IrGTU. 2021. Vol. 11. No. 2. pp. 19–22. DOI: 10.21285/1814-3520-2021-2-19-22
7. Syrkov A. G., Yachmenova L. A. Features of obtaining metallurgical products under conditions of solid-state hydride synthesis. Zapiski Gornogo instituta. 2022. Vol. 256. pp. 651–662. DOI: 10.31897/PMI.2022.25
8. Brichkin V. N., Kurtenkov R. V., Maksimova R. I., Bormotov I. S. Regeneration and recycling of lime component in complex processing of kaolin raw materials. Obogashchenie rud. 2024. No.4. pp. 32–38.
9. Piirainen V. Yu., Barinkova A. A. Development of composite materials based on red mud. Obogashchenie rud. 2023. No. 3. pp. 35–41.
10. Pashkevich M. A., Patokin D. A. Nitrocellulose containing chemical industry waste for mineral resources complex facilities: directions of use. Mining Informational and Analytical Bulletin. 2023. Vol. 9. pp.215-230. DOI: 10.25018/0236_1493_2023_91_0_215.
11. Elansky G. N., Kudrin V. A. Properties and structure of iron-based melts. Vestnik YuUrGU. Seriya “Metallurgiya“. 2015. Vol. 15, No. 3. pp. 11–19. DOI: 10.17580/vestnik.susu.ru/metallurgy/article/view/3920.
12. Visloguzova E. A., Kashcheev I. D., Zemlyanoy K. G. Analysis of the influence of the periclasecarbon refractories quality on properties of converter linings. Novye ogneupory. 2013. No. 3. pp. 127–133. DOI: 10.17073/1683-4518-2013-3-127-133
13. Kharlamov D. A., Masyagina N. I. Mathematical modeling of the thermal state of a steelpouring ladle and its influence on the technical and economic indicators of production. Sovremennye naukoemkie tekhnologii. 2023. No. 4. pp. 100–105. DOI: 10.21518/snt.2023.04.10
14. Pyagay I. N., Shaidulina A. A., Konoplin R. R. et al. Production of amorphous silicon dioxide derived from aluminum fluoride industrial waste and consideration of the possibility of Its use as Al2O3–SiO2 catalyst supports. Catalysts. 2022. Vol. 12. 162. DOI: 10.3390/catal12020162
15. Kashcheev I. D. Corrosion-resistant refractory materials for metallurgical production: thesis of inauguration of Dissertation ... of Doctor of Engineering Sciences. Yekaterinburg, 1996. 52 p.
16. Zhang J., Wang L., Li Yu. Optimization of lining of steelmaking ladles using fireclay bricks and magnesia materials. Journal of Materials Science and Technology. 2020. Vol. 36, Iss. 5. pp. 789-796. DOI: 10.1016/j.jmst.2020.05.012
17. Kulchitskiy A. A., Mansurova O. K., Nikolaev M. Yu. Recognition of defects in hoisting ropes of metallurgical equipment by an optical method using neural networks. Chernye Metally. 2023. No. 3. pp. 81–88.
18. Zaytsev S. V., Doroganov V. A., Doroganov E. A., Varenikova T. A. et al. The corrosion resistance of mullite-siliconcarbide refractory composites. Novye ogneupory. 2017. No. 10. pp. 38–41. DOI: 10.17073/1683-4518-2017-3-41
19. Akselrod L. M., Yarushina T. V., Zabolotskiy A. V., Efimov S. V. et al. Methods for increasing the service life of periclase-carbon products in the lining of OMZ-Spetsstal`s steel-pouring ladles. Novye ogneupory. 2016. No. 3. pp. 90–94. DOI: 10.17073/1683-4518-2016-3-90-94
20. Belkovsky, A. G. Improving the performance of the lining by optimizing its preheating and steel mixing technology. Novosti chernoy metallurgii za rubezhom. 2010. No. 6. pp. 36–38.
21. Ochagova I. G. Influence of the operating mode on service life of the lining of steel-pouring ladles. Novosti chernoy metallurgii za rubezhom. 2014. No. 1. pp. 90–93.
22. Pomortsev S. A., Kashcheev I. D., Zemlyanoy K. G., Ryaplova A. A. et al. Reinforcement of periclase-carbon refractories with carbon fibers. Novye ogneupory. 2015. No. 12. pp. 18–20. DOI: 10.17073/1683-4518-2015-12-18-20
23. Kablov E. N., Grashchenkov D. V., Isaeva N. V., Solntsev S. S. Promising high-temperature ceramic composite materials. Rossiyskiy khimicheskiy zhurnal. 2010. Vol. LIV. No. 1. pp. 20–24. DOI: 10.1134/S0036021X10010024
24. Martinez J., Lopez F., Rodriguez P. Optimization of ladle refractory design using computational modeling. Materials and Design. 2020. 108901. DOI: 10.1016/j.matdes.2020.108901
25. Braulio M. A. L., Rigaud M., Buhr A., Parr C., Pandolfelli V. C. Spinel-containing alumina-based refractory castables. Ceramics International. 2011. Vol. 37, Iss. 6. pp. 1705–1724. DOI: 10.1016/j.ceramint.2011.03.049
26. Nikiforov A. S., Prikhod’ko E. V. thermal stresses generated in the lining of a steel ladle. Refract. Ind. Ceram. 2005. Vol. 46. pp. 360–363. DOI: 10.1007/s11148-006-0012-2
27. Lee S., Kim K., Park J. The influence of mechanical elements on ceramic production. Journal of the European Ceramic Society. 2022. Vol. 42, No. 4. pp. 1234-1242. DOI: 10.1016/J. jeurceramsoc.2022.03.012
28. Kumar R., Singh S., Gupta A. Development and performance evaluation of printed mixtures for lining steelmaking ladles. Refractories and Industrial Ceramics. 2020. Vol. 61, No. 2. pp. 123-130. DOI:10.1007/s11148-020-00438-8
29. Kochubeev Y. N., Kungurtsev V. N., Mironova L. V. A technology for production of composite refractory materials for the lining of steel ladles. Refract. Ind. Ceram. 2005. Vol. 46. pp. 81–84. DOI: 10.1007/s11148-005-0055-9
30. Benavidez E., Brandaleze E., Lagorio Y., Gass S. et al. Thermal and mechanical properties of commercial MgO-C bricks. Matéria (Rio De Janeiro). 2015. Vol. 20. pp. 571–579. DOI: 10.1590/S1517-707620150003.0058
31. Pomortsev S. A., Kashcheev I. D., Zemlyanoy K. G., Ustyansev V. M. Study of the structure and properties of graphites for the production of refractories. Part 2. Properties of periclase- and corundum-carbon refractories when introducing graphites from different manufacturers into their composition. Novye ogneupory. 2016. No. 1. pp. 8–13. DOI: 10.17073/1683-4518-2016-1-8-13
32. Kashcheev I. D., Zemlyanoy K. G., Chevychelov A. V., Valuev A. G. et al. Periclase-carbon refractories formed by a new method. Novye ogneupory. 2017. No. 4. pp. 17-19. DOI: 10.17073/1683-4518-2017-4-17-19
33. Lee S., Kim K., Park J. Evaluation of the erosion resistance of refractory materials in steel ladles. Journal of the European Ceramic Society. 2022. Vol. 42, Iss. 4. pp. 1234-1242. DOI: 10.1016/j.jeurceramsoc.2022.03.012
34. Grigoriev A. S., Danilchenko S. V., Dmitriev A. I. Computer simulation of the effect of steel ladle secondary lining layers on localization and direction of thermal crack propagation. Refract. Ind. Ceram. 2023. Vol. 63. pp. 460–471. DOI: 10.1007/s11148-023-00751-y
35. Pagliosa C., de Ávila H., Santos M. Development of unburned zero carbon alumina-magnesia brick for steel ladle lining. Anais do Seminário de Aciaria, Fundição e Metalurgia de Não-ferrosos. São Paulo: Editora Blucher, 2022. pp. 971–983. DOI: 10.5151/2594-5300-34507
36. Junyi Lv, Haijun Zhang, Haohui Gu, Feng Liang. A review on the application of nanomaterials to boost the service performances of carbon-containing refractories. High-Temperature Materials. 2024. Vol. 1, Iss. 1. pp.10005-10005. DOI: 10.26599/JAC.2025.9221089
37. Horckmans L., Nielsen P., Dierckx P., Ducastel A. Recycling of refractory bricks used in basic steelmaking: A review. Resources, Conservation and Recycling. 2019. Vol. 140. pp. 297–304. DOI: 10.1016/j.resconrec.2018.09.02
38. Hou A., Jin S., Harmuth H. et al. A method for steel ladle lining optimization applying thermomechanical modeling and Taguchi approaches. JOM. 2018. Vol. 70, Iss. 11. pp. 2449–2456. DOI: 10.1007/s11837-018-3063-1
39. Fang L., Fuyong Su et al. Thermal stress analysis of multi-layer lining ladle in production process (preprint). DOI: 10.2139/ssrn.4441736
40. Aleksandrova T. N., Romashev A. O., Kuznetsov V. V. Development of a methodological approach to establishing the floatability of finely disseminated sulfides. Obogashchenie rud. 2020. No. 2. pp. 9-14.
41. Kalanov M. U., Khugaev A. V. Phase transition α‒β in the impurity phase of a silicon single crystal SiO2. Pisma v ZhTF. 2021. Vol. 47, Iss. 7. pp. 22‒26. DOI: 10.21883/PJTF.2021.07.50794.18623

Language of full-text russian
Full content Buy
Back