Journals →  Obogashchenie Rud →  2025 →  #3 →  Back

ENVIRONMENT PROTECTION TECHNOLOGY
ArticleName Development of a sorbent carrier based on apatite-nepheline ores and their beneficiation wastes
DOI 10.17580/or.2025.03.09
ArticleAuthor Karapetyan K. G., Dorosh I. V., Zgonnik P. V.
ArticleAuthorData

Empress Catherine II Saint Petersburg Mining University (Saint Petersburg, Russia)

Karapetyan K. G., Head of Chair, Doctor of Engineering Sciences, Associate Professor, Karapetyan_KG@pers.spmi.ru
Dorosh I. V., Postgraduate student, inna.doroshV@yandex.ru
Zgonnik P. V., Associate Professor, Candidate of Chemical Sciences, Associate Professor, zgonnik@spmi.ru

Abstract

Sorption is among the most effective and affordable methods for soil remediation. Although numerous sorbents exist, only a small fraction are synthesized from industrial waste materials. Composite inorganic sorbents based on phosphates represent a promising category in this regard. This study focuses on producing porous phosphate-based sorbent carriers for cleaning oil-contaminated sites, using glassy phosphate fertilizers (GPF) derived from apatite-nepheline ores and beneficiation wastes. The manufacturing process resembles foam glass production but differs in the selection of foaming agents, additives, temperature regimes, and furnace residence time. The foaming agent must release gaseous products upon thermal decomposition within the softening temperature range of the glass mass. Over 13 foaming agents were evaluated based on this criterion, leading to the selection of three candidates: nitroammophoska (ammonium nitrate phosphate fertilizer or NAF), calcium nitrate, and chalk. NAF was chosen for further experiments. Phosphate carriers made from GPF combined with NAF demonstrate a contaminant removal efficiency of 93 % at high pollution levels. Activation of these carriers can boost removal efficiency to 99 %. Moreover, the biodegradable nature of the carrier material eliminates the need for post-treatment waste collection. The selection of specific carriers for remediating various contaminated surfaces was guided by their morphological properties and mechanical abrasion resistance. This assumption is further supported by the evaluation of activated carriers under experimental conditions, which included measuring the rates of decomposition and the levels of oxidation products before and after treatment, analyzing the kinetics of oil absorption, and examining surface morphology using scanning electron microscopy.

keywords Аpatite-nepheline ore, thermal phosphates, glassy phosphate fertilizers, sorbent carriers, formulation, pore distribution, sorption capacity, surface activation
References

1. Gendler S. G., Stepantsova A. Yu., Popov M. M. Justification on the safe exploitation of closed coal warehouse by gas factor. Zapiski Gornogo Instituta. 2025. Vol. 272. pp. 72-82.
2. Kornev A. V., Spitsyn A. A., Zaimentseva L. A., Zubko M. V. Research of the physico-chemical properties of hydrogel as a means of dust-explosion protection and dust reduction in coal mines. Gornyi Informatsionno-analiticheskiy Byulleten'. 2023. No. 9–1. pp. 180–198.
3. Cherepovitsyna A., Sheveleva N., Riadinskaia A., Danilin K. Decarbonization measures: A real effect or just a declaration? An assessment of oil and gas companies’ progress towards carbon neutrality. Energies. 2023. Vol. 16, No.18. DOI: 10.3390/en16083575
4. Kosolapova S. M., Efimov I., Grai K. M., Pyagay I. N., Rudko V. A. Liquid-liquid equilibrium of FAEs–glycerol phase–ethanol in the ethanol regeneration and FAE separation stage. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2024. Vol. 703, Pt. 2. DOI: 10.1016/j.colsurfa.2024.135412
5. Pelevin A. E. Iron ore beneficiation technologies in Russia and ways to improve their efficiency. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 579–592.
6. Bolshunov A. V., Vasilev D. A., Dmitriev A. N., Ignatev S. A., Kadochnikov V. G., Krikun N. S., Serbin D. V., Shadrin V. S. Results of complex experimental studies at Vostok station in Antarctica. Zapiski Gornogo Instituta. 2023. Vol. 263. pp. 724–741.
7. Trushko V. L., Utkov V. A., Bazhin V. Yu. Topicality and possibilities for complete processing of red mud of aluminous production. Zapiski Gornogo Instituta. 2017. Vol. 227. pp. 547–553.
8. Litvinova T. E., Tsareva A. A., Poltoratskaya M. E., Rudko V. A. The mechanism and thermodynamics of ethyl alcohol sorption process on activated petroleum coke. Zapiski Gornogo Instituta. 2024. Vol. 268. pp. 625–636.
9. Ryszko U., Rusek P., Kołodyńska D. Quality of phosphate rocks from various deposits used in wet phosphoric acid and P-fertilizer production. Materials. 2023. Vol. 16, No. 2. DOI: 10.3390/ma16020793
10. Denisova O. V., Karapetyan K. G., Shakhparonova T. S. Comprehensive processing of phosphate ores into new types of fused fertilizers. Obogashchenie Rud. 2024. No. 3. pp. 35–41.
11. Kogan V. E., Sobianina D. O., Zgonnik P. V., Shakhparonova T. S., Suvorova Z. V. The physicochemical bases of oil and oil products absorption by glassy sorbents. Rasayan Journal of Chemistry. 2021. No. 14. pp. 2006–2016.
12. Cheremisina O. V., Gorbacheva A. A., Balandinsky D. A., Luo Yinzhou, Ponomareva M. A. Synergistic effect of
a mixture of ethoxyphosphoric esters and sodium oleate in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2024. Vol. 685. DOI: 10.1016/j.colsurfa.2024.133314
13. Zubkova O. S., Kuchin V. N., Toropchina M. A., Ivkin A. S. Potential application of saponite clay for production of drilling fluids. International Journal of Engineering. 2024. Vol. 37, No. 11. pp. 2142–2149.
14. Fedeli R., Alexandrov D., Celletti S., Nafikova E., Loppi S. Biochar improves the performance of Avena sativa
L. grown in gasoline-polluted soils. Environmental Science and Pollution Research. 2023. Vol. 30, No. 11. pp. 28791–28802.
15. Pospekhov G. B., Norova L. P., Izotova V. A. Comparing the methods of grain size analysis of gypsum-containing sulfuric acid wastes neutralized with limestone. Ustoychivoye Razvitie Gornykh Territoriy. 2024. Vol. 16, No. 4. pp. 1729–1742.
16. Petkova A. P., Gorbatyuk S. M., Sharafutdinova G. R., Nagovitsyn V. A. Selection of materials and technologies for the electrochemical synthesis of sodium ferrate. Metallurgist. 2024. Vol. 68. pp. 449–459.
17. Ionova N. N., Akhtyamov R. G. Sorption soil purification from oil pollution. Security issues (Security–2021): Proc. of the III International scientific and practical conference. 2021. Vol. 2. pp. 140-145.
18. KSU has developed a multifunctional fertilizer for polluted soils. URL: https://nauka.tass.ru/nauka/20939239?utm_source=google.com&utm_medium=organic&utm_campaign=google.com&utm_referrer=google.com (accessed: 09.06.2025).
19. Chirkova V. S., Sobgaida N. A., Rzazade F. A. Sorbents based on waste from the agro-industrial complex for wastewater treatment. Vestnik Kazanskogo Tekhnologicheskogo Universiteta. 2015. Vol. 18, No. 20. pp. 263–266.
20. Mudruk N., Maslova M. The effect of sorbent composition on sorption properties of materials based on Ti-Ca-Mg phosphates. International Journal of Molecular Sciences. 2023. Vol. 24, No. 9. DOI: 10.3390/ijms24097903
21. Goltsman B. M., Yatsenko E. A. Synthesis and foaming of phosphate glass matrices for complex microfertilizers. Teoreticheskie Osnovy Khimicheskoy Tekhnologii. 2021. Vol. 55, No. 1. pp. 116–125.
22. Novikov Yu. V., Yatsenko E. A. Study of synthesis processes of foamed glass phosphate fertilizers. Izvestiya Vuzov. Severo-Kavkazskiy Region. 2024. No. 4. pp. 100–106.
23. Pat. 2206552 Russian Federation.
24. Belik E. S. Intensification of the process of bioremediation of oil-contaminated soils through the use of a biosorbent based on excess sludge carbonysate. Abstract of the diss. for the degree of Candidate of Engineering Sciences. Perm′, 2014. 167 p.
25. Silva L. D., Puosso F. C., Soares V. O., Filho O. P., Sabino Simone do R. F., Serbena F. C., Crovace M. C., Zanotto E. D. Two-step sinter-crystallization of K2O–CaO–P2O5–SiO2 (45S5-K) bioactive glass. Ceramics International. 2021. Vol. 47, No. 13. pp.18720–18731.
26. Essien E. R., Nwude D. O., Okolie V. E., Adams L. A. Bioactive SiO2-K2O-CaO-P2O5 glass-ceramic scaffold prepared using polyurethane foam template. Cerâmica. 2023. Vol. 69. pp. 30–38.
27. Kogan V. E. Inorganic and organic vitreous foam materials and prospect of environmental cleaning from oil and oil products pollutions. Zapiski Gornogo Instituta. 2016. Vol. 218. pp. 331–338.

Language of full-text russian
Full content Buy
Back