Journals →  Обогащение руд →  2025 →  #3 →  Back

ОБОГАТИТЕЛЬНЫЕ ПРОЦЕССЫ
ArticleName Оценка силовых факторов, действующих на частицу измельчаемого материала при помоле в роторной мельнице
DOI 10.17580/or.2025.03.02
ArticleAuthor Качаев А. Е., Орехова Т. Н., Строкова В. В., Сивальнева М. Н.
ArticleAuthorData

ВНИИ систем орошения и сельхозводоснабжения «Радуга», Московская обл., п. Радужный, РФ

Качаев А. Е., старший научный сотрудник, канд. техн. наук, doctor_cement@mail.ru

 

Белгородский государственный технологический университет им. В. Г. Шухова, Белгород, РФ

Орехова Т. Н., доцент, канд. техн. наук, nefact@mail.ru

Строкова В. В., профессор, д-р техн. наук, профессор, vvstrokova@gmail.com

Сивальнева М. Н., доцент, канд. техн. наук, 549041@mail.ru

Abstract

Анализируются силовые факторы, действующие на частицы в роторной мельнице оригинальной конструкции, созданной на основе принципов комплексного динамического воздействия на измельчаемый материал, что позволяет осуществлять тонкий и сверхтонкий помол, пневмогомогенизацию и механоактивацию. Предложены методики моделирования двухфазных потоков в агрегатах роторного типа и оценки силовых факторов, влияющих на динамику частицы внутри помольной камеры. С помощью численного и имитационного моделирования установлен характер движения частиц диаметром dср = 10–50 мкм, что позволит конструктивно совершенствовать полость камеры, увеличивать количество столкновений между частицами, изменять их аэродинамику и интенсифицировать процесс измельчения в целом. Показано, что понимание динамики частиц внутри помольной камеры агрегата позволит создавать модели, эффективные при дифференциации процессов, когда кинетика измельчения и динамика частиц независимы друг от друга.

Исследование выполнено за счет гранта Российского научного фонда № 23-19-00796 (https://rscf.ru/project/23-19-00796/) с использованием оборудования Центра высоких технологий на базе БГТУ им. В. Г. Шухова.

keywords Роторная мельница, измельчение, силовые факторы, центробежно-вихревой поток, помол, материал, помольная камера
References

1. Vaisberg L. A., Kazakov S. V., Lavrov B. P. Analysis of one of the promising schemes of a vibration impact crusher. Obogashchenie Rud. 2006. No. 3. pp. 41–43.
2. Plavelsky E., Sharapov R. Modeling of movement the flowable building load in the operating vessel of vehicle. Proc. of the International scientific conference EMMFT 2017. Cham: Springer, 2018. Vol. 692. pp. 760–768.
3. Semikopenko I. A., Vyalykh S. V., Zhukov A. A. The unit of a grinding and material classification on the basis of a mill of desintegrating type. Middle East Journal of Scientific Research. 2013. Vol. 18, Iss. 11. pp. 1608–1615.
4. Blekhman L. I., Kremer E. B. Intensification of grinding: unconventional chambers and irregular modes of selfgrinding mills. Scientific school «Vibrotechnology-97». Mechanical processing of dispersed (bulk) materials and media. Odessa, 1997. Pt. 4. pp. 85–90.
5. Arsentiev V. A., Gerasimov A. M., Ustinov I. D. Resource-saving in processing of phyllosilicate minerals. Gornyi Zhurnal. 2018. No. 12. pp. 52–58.
6. Blekhman I. I. Vibration mechanics. Moscow: Fizmatlit, 1994. 400 p.
7. Verigin A. N., Danilchuk V. S., Nezamaev N. A. Machines and devices for processing dispersed materials. Examples of creation. St. Petersburg: Lan′, 2022. 800 p.
8. Pelevin A. E. Ways to increase the efficiency of iron ore processing technology. Chernaya Metallurgiya. Byulleten' Nauchno-tekhnicheskoy i Ekonomicheskoy Informatsii. 2019. Vol. 75, No. 2. pp. 137–146.
9. Vodinchar G. M. Cascade turbulence models and their construction in the Maple system. Proc. of the V All-Russian youth scientific school «Geospheres and Space». Petropavlovsk-Kamchatsky, October 02-03, 2023. Petropavlovsk-Kamchatsky: Institute of Cosmophysical Research and Radio Wave Propagation, Far Eastern Branch of RAS, 2023. pp. 11–12.
10. Smulsky I. I. Aerodynamics and processes in vortex chambers. Novosibirsk, 1992. 301 p.
11. Sevostyanov V. S., Kachaev A. E., Boychuk I. P., Kuznetsova I. A. Theoretical studies of processes in a rotary mill with combined effects on a reduced material. Vestnik Belgorodskogo Gosudarstvennogo Tekhnologicheskogo Universiteta im. V. G. Shukhova. 2017. No. 9. pp. 122–129.
12. Vaisberg L. A., Zarogatsky L. P., Turkin V. Ya. Vibrating crushers. Fundamentals of calculation, design and technological application. St. Petersburg: VSEGEI, 2004. 306 p.
13. Pat. 2444407 Russian Federation.
14. Vasileva M. A., Feit S. Multiphysical model of heterogenous flow moving along а channel of variable crosssection. Zapiski Gornogo Instituta. 2017. Vol. 227. pp. 558–562.
15. Blekhman I., Blekhman L., Vaisberg L., Vasilkov V. Energy performance of vibrational transportation and process machines. Proc. of the 14th International conference on vibration problems. Singapore: Springer, 2021. Vol. 58. pp. 29–46.
16. Bogdanov V. S., Semikopenko I. A., Voronov V. P. Disintegrators. (Construction. Theory. Experiment). Belgorod: BSTU named after V. G. Shukhov, 2020. 365 p.
17. Prokopiev S. A., Pelevin A. E., Prokopiev E. S., Ivanova K. K. Increasing the integrity of iron-ore raw material use with the help of screw separation. Izvestiya Vysshikh Uchebnykh Zavedenii. Gornyi Zhurnal. 2019. No. 6. pp. 70–80.
18. Dey S. K., Dey S., Das A. Comminution features in an impact hammer mill. Powder Technology. 2013. Vol. 235. pp. 914–920.
19. Chaplina T. O. Transfer of matter in vortex and wave flows in single-component and multi-component media: diss. for the degree of Doctor of Physical and Mathematical Sciences. Мoscow, 2020. 275 p.
20. Arkhipov V. A., Basalaev S. A., Perfilieva K. G., Polenchuk S. N., Usanina A. S. Methods for determining the drag coefficient at gas injection from the surface of spherical particle. Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika. 2022. No. 76. pp. 56–69.
21. Logachev I. N., Logachev K. I. Aerodynamic foundations of aspiration. St. Petersburg: Khimizdat, 2005. 659 p.
22. Averkova O. A., Logachev I. N., Logachev K. I. Modeling of tear-off and recirculation flows in dedusting ventilation systems. Belgorod: BSTU named after V. G. Shukhov, 2019. 156 p.
23. Kondratev A. S., Nha T. L., Shvydko P. P. Calculation of hydraulic drag coefficient of free-form solid particles. Fundamentalnye Issledovaniya. 2016. No. 11–2. pp. 286–292.
24. Sternin L. E., Shraiber A. A. Multiphase gas flows with particles. Moscow: Mashinostroyenie, 1994. 318 p.
25. Busroyd R. Gas flow with suspended particles. Moscow: Mir, 1975. 378 p.
26. Gupta A., Lilly D., Syred N. Swirling flows. Moscow: Mir, 1987. 588 p.

27. Nigmatullin R. I. Dynamics of multiphase media. Moscow: Nauka, 1987. Pt. 1. 464 p.
28. Kudryashova N. A. Calculation of the forces of ideal gas flow action based on the MKT and the velocity addition theorem. Mezhdunarodnyi Zhurnal Prikladnykh i Fundamentalnykh Issledovaniy. 2020. No. 11. pp. 57–63.
29. Orekhova T. N., Prokopenko V. S., Okushko V. V., Kachaev A. E. The rotating layer mechanics of polydisperse particles in the continuous action pneumatic mixers. IOP Conference Series: Materials Science and Engineering. 2019. Vol. 698, Iss. 2. DOI: 10.1088/1757-899X/698/2/022023
30. Zhao X., Xue L., Xu F. Asphalt pavement paving segregation detection method using more efficiency and quality texture features extract algorithm. Construction and Building Materials. 2021. Vol. 277. DOI: 10.1016/j.conbuildmat.2021.122302
31. Ilyina T. N., Sevostyanov V. S., Uralskii V. I., et al. Research, design, calculations, and operating experience. Processes and equipment for chemical and oil-gas production: Mechanism of stagewise polydispersed material granulation. Chemical and Petroleum Engineering. 2010. Vol. 46, Iss. 3. pp. 193–200.
32. Fomin V. L. Continuum mechanics for engineers. Leningrad: LSU, 1975. 116 p.
33. Arkhipov V. A., Usanina A. S. Motion of aerosol particles in a stream. Tomsk: TSU, 2013. 92 p.
34. Kachaev A. E. On determining the impact time and the disintegrator power consumed for crushing during impact. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V. G. Shukhova. 2011. No. 3. pp. 60–64.
35. Paraschiv G., Moiceanu G., Voicu G., Chitoiu M., Cardei P., Dinca M. N., Tudor P. Optimization issues of a hammer mill working process using statistical modelling. Sustainability. 2021. Vol. 13, Iss. 2. DOI: 10.3390/su13020973
36. Gorlov A. S. Investigation of the abrasion process of solid phase particles in the grinding chamber of a vortex acoustic dispersant. Vestnik Belgorodskogo Gosudarstvennogo Tekhnologicheskogo Universiteta im. V. G. Shukhova. 2015. No. 5. pp. 179–183.

Language of full-text russian
Full content Buy
Back