ArticleName |
Integrated beneficiation technology
for talc ore |
ArticleAuthorData |
Institute of Mineral Resources (Tashkent, Uzbekistan)
Badalov F. A., Senior Researcher, PhD in Engineering Sciences, frenk_ru@mail.ru Asabayev D. Kh., Scientific Secretary, PhD in Engineering Sciences, Dilshodasabaev@gmail.com Normurodov A. A., Junior Researcher, PhD in Engineering Sciences, azizbek19922304@mail.ru Botirov M. Sh., Junior Researcher, mirmuxsin1994@mail.ru |
Abstract |
This study presents the results of a comprehensive investigation into the material composition and beneficiation of talc ore from the Chettic deposit. A combination of analytical techniques—including chemical analysis, semi-quantitative spectral and optical emission spectroscopy, mineralogical assessment, and grain size distribution analysis—was employed to characterize the ore and determine optimal processing methods. Based on the experimental data and a review of relevant literature, a multi-stage beneficiation approach was developed, utilizing mineral-specific properties through gravity concentration, dry electromagnetic separation, and flotation techniques. A complete chemical analysis of the composite sample revealed the following major components (wt.%): SiO2 — 38.12, Al2O3 — 4.13, CaO — 12.69, and MgO — the primary valuable component — at 21.7. The content of the undesirable impurity Fe3O3 was found to be 7.92 %. Grain size distribution analysis of ore crushed to –3+0 mm showed a significant increase in the talc content in finer fractions, with concentrations reaching 70.2–72.2 %. When enriching a talc sample on a concentration table, the best results were obtained with an ore grinding size of –0.5+0 mm. Dry electromagnetic separation conducted at a current of 5 A resulted in the division of the ore into magnetic (28.3 %) and non-magnetic (71.7 %) fractions. This process enabled the removal of up to 82.7 % of free iron-bearing minerals from the sample. Laboratory-scale beneficiation tests yielded a talc concentrate containing 89.3 % talc and 0.96 % total iron, with an overall talc recovery of 67.4 %. The resulting concentrate meets the specifications of GOST 21235-75 for ground talc, classified as TMP brand, grade 1. |
References |
1. Umirov F. E., Aslonov A. B. Research of the processes of obtaining magnesium chloride on the basis of talc-magnesite ore of the Zipelbulak deposit. International Journal of Advanced Technology and Natural Sciences. 2021. Vol. 2. pp. 60–64. 2. Kulikov B. F., Zuev V. V., Vainshenker I. A., Mitenkov G. A. Mineralogical handbook of a processing technologist. Leningrad: Nedra, 1985. 264 p. 3. Pat. SU 1041516 USSR. 4. Karapetyants M. Kh., Drakin S. I. General and inorganic chemistry. Moscow: Khimiya, 2000. 592 p. 5. Zakaria Hamimi, Wael Hagag, Samir Kamh, Zeinhom El-Alfy. Structural controls on the talc mineralization at El Nasr mining company concession, Wadi Allaqi district, South Eastern Desert, Egypt: Insights from remote sensing, field investigation and geological traverses. Journal of African Earth Sciences. 2025. Vol. 226. DOI: 10.1016/j.jafrearsci.2025.105600 6. Zhang W., Li Ch., Xu Q., Hu K., Chen H., Liu Yu., Wan Yi., Zhang J., Li X. Effective adsorption and recovery of rare earth elements from wastewater by activated talc. Applied Clay Science. 2024. Vol. 251. DOI: 10.1016/j.clay.2024.107312 7. Yi H., Zhao Y., Liu Y., Wang W., Song S., Liu C., Li H., Zhan W., Liu X. A novel method for surface wettability modification of talc through thermal treatment. Applied Clay Science. 2019. Vol. 176. pp. 21–28. 8. Chen T. T., Dutrizac J. E., White C. W. Serpentine ore microtextures occuring in the magnola magnesium process. JOM: The Journal of the Minerals, Metals & Materials Society. 2000. Vol. 52, Iss. 4. pp. 20–22. 9. Umirov F. E., Nomozova G. R., Shodikulov Zh. M. Physicochemical properties and agrochemical effectiveness of new defoliants based on sodium, magnesium and calcium chlorates containing surfactants. Universum: Khimiya i Biologiya. Electronic Scientific Journal. 2021. No. 1. URL: https://7universum.com/ru/nature/archive/item/11155 (accessed: 20.03.2025). 10. Umirov F. E., Shodikulov Zh. M., Aslonov A. B., Sharipov S. Sh. Material composition of talc-magnesite rocks of the Zinelbulak deposit in Uzbekistan. Obogashchenie Rud. 2023. No. 4. pp. 25–31. 11. Tran V. C., Do D. T., Nguyen T. T., Ngo V. H., Nguyen T. N., Kieu B. T. Research and manufacture of aluminazirconia ceramic from bauxite, kaolin, talc and glass frit. Internauka. Electronic Scientific Journal. 2024. No. 13. URL: https://internauka.org/journal/science/internauka/330 (accessed: 09.04.2025). 12. El-Mofty S. E., Abuhasel K. A., Elbendari A. M., El-Midany A. A. Ultrafine dry grinding of talc by planetary mill: effects of operating conditions. Obogashchenie Rud. 2020. No. 6. pp. 21–25. 13. Olimov P. S., Sharifov H. S. The use of mulvaja talc in the pharmaceutical industry. Pharmaceutical market of Tajikistan: Problems and prospects. Proc. of the International scientific and practical conference. Dushanbe: Tajik National University, 2023. pp. 123–125. 14. Dudin A. N., Kushchenko O. S., Lazareva M. S., Dudina S. N. Evaluation of the granulometric composition of talc. Innovations in life sciences. Proc. of the VI International symposium. Belgorod: Belgorod State National Research University, 2024. pp. 201–203. 15. Serikov Yu. B. The use of talc of the ancient population of the forest Trans-Urals. Geoarkheologiya i Arkheologicheskaya Mineralogiya. 2023. Vol. 10. pp. 106–114. 16. Zhang S,, Chen L., Hong Ya., Liang G., Chen С., Xian Yo., Wen Sh. Enhancing magnetism and magnetic separation of ultrafine chalcopyrite from talc through surface oxidation treatment. Journal of Materials Research and Technology. 2024. Vol. 28. pp. 3402–3413. 17. Jin S., Zhang P., Ou L. Study on the depression mechanism of zinc sulfate on talc in chalcopyrite flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. Vol. 619. DOI: 10.1016/j.colsurfa.2021.126474 18. Liu D., Zhang G., Huang G., Gao Y., Wang M. Investigations on the selective flotation of chalcopyrite from talc using gum Arabic as depressant. Separation Science and Technology. 2020. Vol. 55. pp. 3438–3446. |