Название |
Analysis of the efficiency of radiometric mineral processing
methods for complex low-iron apatite-containing ores
of the Kovdor deposit |
Информация об авторе |
Mining Institute of Kola Science Centre of RAS (Apatity, Russia)
Shibaeva D. N., Leading Researcher, Candidate of Engineering Sciences, shibaeva_goi@mail.ru Volkov D. O., Technician Bulatov V. V., Leading Engineer
Geological Institute of Kola Science Centre of RAS (Apatity, Russia) Kompanchenko A. A., Senior Researcher, Candidate of Geological and Mineralogical Sciences, komp-alena@yandex.ru |
Реферат |
This paper presents the results of applying radiometric methods to enrich complex, low-iron apatite-containing ores from the Kovdor deposit. Samples were categorized based on their mineralogical and petrographic characteristics, focusing on the presence or absence of the main ore minerals—apatite and magnetite. The samples were divided into three groups: predominantly magnetite, predominantly calcite, and predominantly silicate. The luminescent properties of apatite and calcite, the primary luminescent minerals in the ores, were studied in both their monomineral fractions and in lump material containing both minerals. Luminescence of apatite and calcite was induced using visible light (with a peak wavelength of 404 nm) and X-ray radiation sources. Analysis of the monomineral fractions revealed that X-ray exposure provides the clearest contrast between the luminescent properties of apatite and calcite, with the luminescence captured by a photomultiplier using SZS 22 optical glass. Further evaluation demonstrated that luminescence color does not effectively identify both apatite and calcite simultaneously, nor does it allow for sorting the minerals based on their concentration. In X-ray luminescence separation tests using a prototype separator, the threshold was optimized to maximize the apatite grade in the concentrate, especially from samples where apatite is the primary mineral, while minimizing contamination by non-apatite minerals. The separation process showed that 72 % of samples with apatite forming 30–50 % of the surface, and 33 % of samples with apatite covering 5–20 % of the surface (containing apatite inclusions ranging from 1–10 mm to <1 mm in size), were successfully concentrated into the apatite product. Samples without visible apatite were separated into the gangue product. |
Библиографический список |
1. Rimskaya-Korsakova O. M., Krasnova N. I. Geology of deposits of the Kovdor massif. St. Petersburg: Publishing House of St. Petersburg University, 2002. 146 p. 2. Afanasyev B. V. Mineral resources of alkaline-ultramafic massifs of the Kola Peninsula. St. Petersburg: Publishing House «Rose of the Winds», 2011. 224 p. 3. Ivanyuk G. Yu., Kalashnikov A. O., Pakhomovsky Ya. A., Mikhailova J. A., Yakovenchuk V. N., Konopleva N. G., Sokharev V. A., Bazai A. V., Goryainov P. M. Economic minerals of the Kovdor baddeleyite-apatite-magnetite deposit, Russia: Mineralogy, spatial distribution and ore processing optimization. Ore Geology Reviews. 2016. Vol. 77. pp. 279–311. 4. Rass I. T., Petrenko D. B., Kovalchuk E. V., Yakushev A. I. Phoscorites and carbonatites: Relations, possible petrogenetic processes, and parental magma, with reference to the Kovdor massif, Kola Peninsula. Geokhimiya. 2020. Vol. 65, No. 7. pp. 627–653. 5. Golovanov G. A. Flotation of Kola apatite-bearing ores. Moscow: Khimiya, 1976. 216 p. 6. Samatova L. A., Kienko L. A., Voronova O. V., Plyusnina L. N. Development of theoretical foundations for selective flotation of calcium-containing minerals included in the composition of ores of Primorsky deposits. Gornyi Informatsionno-analiticheskiy Byulleten′. 2005. Vol. 12, No. 3. pp. 274–287. 7. Lavrinenko A. A., Shrader E. A., Kharchikov A. N., Kunilova I. V. Apatite flotation from brazilite-apatite-magnetite ore. Fiziko-tekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2013. No. 5. pp. 157–165. 8. Pelevin A. E. Iron ore beneficiation technologies in Russia and ways to improve their efficiency. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 579–592. 9. Lebedok A. V., Markworth L. Contemporary iron ore processing: Challenges and solutions from ALLMINERAL. Gornaya Promyshlennost′. 2022. No. 3. pp. 84–88. 10. Bhoja S. K., Tripathy S. K., Murthy Y. R., Ghosh T. K., Kumar C. R., Chakraborty D. P. Influence of mineralogy on the dry magnetic separation of ferruginous manganese ore — A comparative study. Minerals. 2021. Vol. 11, Iss. 2. DOI: 10.3390/min11020150 11. Xie S., Hu Z., Lu D., Zhao Y. Dry permanent magnetic separator: Present status and future prospects. Minerals. 2022. Vol. 12. DOI: 10.3390/min12101251 12. Shibaeva D. N., Tereshchenko S. V., Kompanchenko A. A. Analysis of the effect of dry magnetic separation on the process of ferruginous quartzites disintegration. Minerals. 2021. Vol. 11, Iss. 8. DOI: 10.3390/min11080797 13. Shibaeva D. N., Tereshchenko S. V., Asanovich D. A., Shumilov P. A. On the need to classify rock mass fed to dry magnetic separation. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 603–612. 14. Gaft M., Reisfeld R., Panczer G. Modern luminescence spectroscopy of minerals and materials. Berlin: Springer International Publishing, 2019. 606 p. 15. Gorobets B. S., Rogozhin A. A. Luminescence spectra of minerals. Reference book. Moscow: VIMS, 2001. 294 p. 16. Tereshchenko S. V. Scientific foundations of luminescent separation of mineral raw materials: diss. for the degree of Doctor of Engineering Sciences. St. Petersburg, 2005. 378 p. 17. Yan Q., Liu Z., Guo Y. Study on fluorescence properties of green-blue apatite. Crystals. 2022. Vol. 12. DOI: 10.3390/cryst12060866 18. Chanturia V. A., Morozov V. V., Dvoichenkova G. P., Chanturia E. L. Increasing the recoverability of diamonds in the process of X-ray luminescent separation using phosphorcontaining compositions. Ustoychivoye Razvitie Gornykh Territoriy. 2022. Vol. 14, No. 3. pp. 410–421. 19. Tereshchenko S. V. Basic provisions of the theory of luminescent separation of mineral raw materials. Apatity: KSC RAS, 2002. 145 p. 20. Stepanova K. D., Petrov S. V. Material composition of calcite carbonatites of the Kovdor massif that are potential industrial ores. Vestnik Voronezhskogo Gosudarstvennogo Universiteta. Seriya: Geologiya. 2018. No. 1. pp. 102–108. 21. Shibaeva D. N., Kompanchenko A. A., Bulatov V. V., Asanovich D. A. Express assessment of apatite content in apatite-nepheline ores of ultrabasic alkaline complexes based on its luminescent properties (the first study stage). Minerals. 2023. Vol. 13, No. 1. DOI: 10.3390/min13010037 22. Mokrousov V. A., Litvintsev E. G., Zverev V. V., Gulin E. N. On the possibility of preliminary beneficiation of complex apatite-magnetite ores. Issues of radiometric beneficiation of ores of non-ferrous, rare, ferrous metals and mining andchemic al raw materials: Collection of scientific papers of VIMS. 1979. pp. 60–67. 23. Shibaeva D. N., Voronin R. P., Kompanchenko A. A., Volkov D. O., Asanovich D. A., Bulatov V. V. Hardware and software solutions for the generation of a database of HSV-color characteristics for the main ores and rocks of the Khibiny massif. Minerals. 2024. Vol. 14. No. 21. DOI: 10.3390/min14020186 |