Journals →  CIS Iron and Steel Review →  2024 →  #2 →  Back

Ecology and Recycling
ArticleName Electroflotation extraction of a heavy metal hydroxide mixture from a multi-component solution
DOI 10.17580/cisisr.2024.02.17
ArticleAuthor Hein Thu Aung, A. V. Kolesnikov, Yu. M. Averina, V. V. Chelnokov
ArticleAuthorData

Mendeleev University of Chemical Technology of Russia (Moscow, Russia)

Hein Thu Aung, Cand. Eng., Doctoral Student of the Dept. of Technology of Inorganic Substances and Electrochemical Processes, e-mail: spiritlay@yandex.ru
A. V. Kolesnikov, Cand. Eng., Associate Prof., Acting Head of the Dept. of Technology of Inorganic Substances and Electrochemical Processes, e-mail: kolesnikov.a.v@muctr.ru
Yu. M. Averina, Cand. Eng., Associate Prof. Head of the Dept. of Logistics and Economic Informatics, e-mail: averina.i.m@muctr.ru
V. V. Chelnokov, Dr. Eng., Prof., Dept. of Logistics and Economic Informatics, e-mail: chelnokov.v.v@muctr.ru

Abstract

Considerable attention is paid to the issues of wastewater treatment in the metallurgical industry. Electrochemical wastes are certainly considered as the most dangerous in terms of negative impact on the environment and humans. The high content of heavy metals and extreme pH values make it impossible to discharge such wastewater without deep purification treatment. The electroflotation method for extraction of metals from multi-component systems is considered as the most efficient. As part of the work done, the influence of addition of flocculants and surfactants, as well as the background electrolyte, on the efficiency of extracting a mixture of metals Fe2+, Ni2+, Zn2+, Co2+, Cu2+, was assessed. It has been established that systems with electrolyte based on sodium sulfate have higher stability due to changes in the surface layer and the “dispersed particle – gas bubble” interface, while addition of OS-20B surfactant leads to inhibition of the electroflotation process and decrease of the efficiency of heavy metals extraction. A similar effect was observed for a system with a background electrolyte based on sodium chloride and the addition of ALM-10 surfactant. Addition of flocculants did not have a significant effect on the efficiency of electroflotation purification and was considered as not advisable. Based on the obtained results, a conceptual scheme for the process of wastewater purification treatment from heavy metal ions using the electroflotation method is proposed.

keywords Electroflotation, wastewater, heavy metals, flocculant, surfactant, iron, nickel, zinc, cobalt, copper
References

1. Shyam R., Puri J. K., Kaur H., Amutha R., Kapila A. Single and binary adsorption of heavy metals on fly ash samples from aqueous solution. J. Mol. Liq. 2013. Vol. 178. pp. 31–36. DOI: 10.1016/j.molliq.2012.10.031
2. Peng W., Li H., Liu Y., Song S., A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Mol. Liq. 2017. Vol. 230. pp. 496–504. DOI: 10.1016/j.molliq.2017.01.064
3. Sherlala A. I. A., Raman A. A. A., Bello M. M., Asghar A. A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere. 2018. Vol. 193. pp. 1004–1017. DOI: 10.1016/j.chemosphere.2017.11.093
4. Bibaj E., Lysigaki K., Nolan J. W., Seyedsalehi M., Deliyanni E. A., Mitropoulos A. C., Kyzas G. Z., Activated carbons from banana peels for the removal of nickel ions. Int. J. Environ. Sci. Technol. 2019. Vol. 16. pp. 667–680. DOI: 10.1007/s13762-018-1676-0
5. Hemavathy R. R. V., Kumar P. S., Suganya S., Swetha S., Varjani S. J., Modelling on the removal of toxic metal ions from aquatic system by different surface modified Cassia fistula seeds. Bioresour. Technol. 2019. Vol. 281. pp. 1–9. DOI: 10.1016/j.biortech.2019.02.070
6. Lei S., Shi Y., Qiu Y., Che L., Xue C. Performance and mechanisms of emerging animal-derived biochars for immobilization of heavy metals. Sci. Total Environ. 2019. Vol. 646. pp. 1281–1289. DOI: 10.1016/j.scitotenv.2018.07.374
7. Edelstein M., Ben-Hur M. Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Sci. Hortic. 2018. Vol. 234 pp. 431–444. DOI: 10.1016/j.scienta.2017.12.039
8. Gupta N., Khan D. K., Santra S. C. Determination of public health hazard potential of wastewater reuse in crop production. World Rev. Sci. Technol. Sustain. Dev. 2010. Vol. 7. pp. 328–340. DOI: 10.1504/WRSTSD.2010.032741
9. Liu L., Li W., Song W., Guo M. Remediation techniques for heavy metal contaminated soils: Principles and applicability. Sci. Total Environ. 2018. Vol. 633. pp. 206–219. DOI: 10.1016/j.scitotenv.2018.03.161
10. Qiu Yinxuan, Yang Limei, Huang Songtao, Li Yan, Zhang Ge, Hu Yihanna. Progress in separation and recycle of heavy metals from wastewater by synergistic solvent extraction method. Xiyou Jinshu / Chinese Journal of Rare Metals. 2015. Vol. 39 (8). pp. 749–758. DOI: 10.13373/j.cnki.cjrm.2015.08.012
11. Yan Li, Limei Yang, Zheng Xu, Qi Sun. Separation and recovery of heavy metals from wastewater using synergistic solvent extraction. IOP Conf. Ser.: Mater. Sci. Eng. 2017. Vol. 167. 012005. DOI: 10.1088/1757-899X/167/1/012005
12. Kuzin E. N., Averina Yu. M., Kurbatov A. Yu., Sakharov P. A. Wastewater treatment in the electroplating industry using composite coagulants-reducers. Tsvetnye metally. 2019. No. 10. pp. 91–96.
13. Ince M., Kaplan Ince O. An overview of adsorption technique for heavy metal removal from water/wastewater: A critical review. International Journal of Pure and Applied Sciences. 2017. Vol. 2. pp. 10–19. DOI: 10.29132/ijpas.372335
14. Bai D., Ying Q., Wang N., Lin J., Copper removal from electroplating wastewater by coprecipitation of copper-based supramolecular materials: preparation and application study. J. Chem. 2016. No. 5. pp. 1–7. DOI: 10.1155/2016/5281561
15. Vinogradov S.S. Ecologically safe galvanizing production. 2nd edition. “Globus”. Moscow : 2002. 352 p.
16. Kurbatov A. Yu., Fadeev A. B., Averina Yu. M., Vetrova M. A. Possible use of precipitation for water recirculation system of a machine building site: analysis. Tsvetnye metally. 2021. No. 10. pp. 55–61.
17. Abrashov A., Grigoryan N., Korshak Y., Vagramyan T., Grafov O., Mezhuev Y. Regularities of the Formation of a Green Superhydrophobic Protective Coating on an Aluminum Alloy after Surface Modification with Stearic Acid Solutions. Metals. 2021. No. 11, pp. 1718. DOI: 10.3390/met11111718
18. Mezhuev Ya. O., Korshak Yu. V., Vagramyan T. A., Abrashov A. A., Piskareva A. I., Yuryeva G. A., Shtilman M. I. New anticorrosion coatings based on crosslinked copolymers of pyrrole and epoxycontaining compounds. International Polymer Science & Technology. 2014. Vol. 41. Iss. 4. pp. Т53–Т60.
19. Aung P., Shcherbakova G. A., Shcherbakova L. A., Hein T. A., Kolesnikov A. V. Study of efficiency of electroflotation process for joint extraction of Cu, Ni and Zn ions in composition of multicomponent systems. Voda: khimiya i ekologiya. 2019. No. 3–6. pp. 54–60.
20. Kolesnikov A. V., Aung P., Davydkova T. V., Kolesnikov V. A. Establishment of regularities of electroflotation extraction of nonferrous metal (Cu, Ni, Zn, Co, Fe) hydroxides from wastewater of various compositions in the presence of industrial surfactants. Non-ferrous Metals. 2021. No. 1. pp. 3–9.
21. Huang Y., Wu D., Wang X., Huang W., Lawless D., Feng X. Removal of heavy metals from water using polyvinylamine by polymer-enhanced ultrafiltration and flocculation. Sep. Purif. Technol. 2016. Vol. 158. pp. 124–136. DOI: 10.1016/j.seppur.2015.12.008
22. Li Y., Bai P., Yan Y., Yan W., Shi W., Xu R. Removal of Zn2+, Pb2+, Cd2+, and Cu2+ from aqueous solution by synthetic clinoptilolite. Microporous Mesoporous Mater. 2019. Vol. 273. pp. 203–211. DOI: 10.1016/j.micromeso.2018.07.010
23. Bashir A., Malik L. A., Ahad S., Manzoor T., Bhat M. A., Dar G., Pandith A. H. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ. Chem. Lett. 2019. Vol. 17. pp. 729–754. DOI: 10.1080/25765299.2020.1756177
24. Shahrokhi-Shahraki, R.; Benally, C.; El-Din, M.G.; Park, J. High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere. 2021, Vol. 264. No. 128455. DOI: 10.1016/j.chemosphere.2020.128455
25. Kuzin E. N., Chernyshev P. I., Vizen N. S., Krutchinina N. E. The Purification of the Galvanic Industry Wastewater of Chromium(VI) Compounds Using Titanium(III) Chloride. Russian Journal of General Chemistry. 2018. Vol. 88. No. 13. pp. 2954–2957 DOI: 10.1134/S1070363218130200
26. Kuzin E. N., Kruchinina N. E., Chernyshev P. I., Vizen N. S. Synthesis of Titanium Trichloride. Inorganic Materials. 2020. Vol. 56. No. 5. pp. 507–511. DOI: 10.1134/S002016852005009X
27. Kolesnikov A. V., Meshalkin V. P., Davydkova T. V., Kolesnikov V. A. Scientific and Technological Foundations of Improvement of the Resource Efficiency of Electroflotation Recovery of Poorly Soluble Inorganic Compounds (Oxides, Carbides, Hydroxides) from Aqueous Electrolyte Solutions. Doklady Physical Chemistry. 2020. Vol. 494. No. 1. pp. 133–138.
28. Konkova T. V., Than Z. H., Hein T. A., Stoyanova A.D. Effect of the medium composition on the extraction of chromium, aluminium and iron hydroxides from wastewater by electroflotation. Tsvetnye Metally. 2022. No. 5. pp. 25–30.
29. Kolesnikov V. A., Kryuchkova L. A., Ilyin V. I., Kolesnikov A. V. Electroflotation metals ion extraction in the composition of multi-component systems, from wastewaters of galvanizing production. Galvanotekhnika i obrabotka poverkhnosti. 2015. Vol. 23. No. 1. pp. 51–59.
30. Kuzin E. N. Application of the method of atomic emission spectroscopy with microwave (magnetic) plasma in the processes of identifying the chemical composition of steelmaking waste. Chernye metally. 2022. No. 10. pp. 79–82.
31. Kuzin E. N., Kruchinina N. E. Production of complex coagulants based on mineral concentrates and their use in water treatment. Obogashchenie rud. 2019. No. 3. pp. 43–48.
32. Kolesnikov V. A., Kryuchkova L. A., Ilyin V. I., Kolesnikov A. V. Electroflotation in wastewaters purification with removal of oil products, colorants, surfactants, ligands and biological contaninants: A review. Teoreticheskie osnovy khimicheskoy tekhnologii. 2019. Vol. 53. No. 2. pp. 205–228. DOI: 10.1134/S0040357119010093

Full content Electroflotation extraction of a heavy metal hydroxide mixture from a multi-component solution
Back