Journals →  CIS Iron and Steel Review →  2024 →  #2 →  Back

Metal Science and Metal Physics
ArticleName Viscoplastic properties of chromium-nickel steel in short-term creep under constant stress. Part 2
DOI 10.17580/cisisr.2024.02.13
ArticleAuthor A. Yu. Kuzkin, N. V. Martyushev, V. S. Tynchenko, T. A. Panfilova, Xiajgang Wu
ArticleAuthorData

Empress Catherine II Saint Petersburg Mining University (St. Petersburg, Russia)

A. Yu. Kuzkin, Cand. Eng., Associate Prof., Dept. of Mechanical Engineering*, e-mail: Kuzkin_AYu@pers.spmi.ru

 

Tomsk Polytechnic University (Tomsk, Russia)
N. V. Martyushev, Cand. Eng., Associate Prof.*, e-mail: martjushev@tpu.ru

 

Bauman Moscow State Technical University (Moscow, Russia)1Reshetnev Siberian State University of Science and Technology (Krasnoyarsk, Russia)2
V. S. Tynchenko, Dr. Eng., Associate Prof.1, 2, e-mail: vadimond@mail.ru

 

Bauman Moscow State Technical University (Moscow, Russia)1Siberian Federal University (Krasnoyarsk, Russia)2
T. A. Panfilova, Cand. Eng.1, 2, e-mail: t_pan80@mail.ru

 

Hebei University of Technology (Tianjin, China)
Xiajgang Wu, Ph. D., Prof., e-mail: xgwu@hrbust.edu.cn

 

*Corresponding authors.

Abstract

Chromium-nickel steel machining (cutting, pressure shaping) is impossible without taking into account their viscosity and plasticity. The purpose of this paper is studying formation and evolution of viscous deformation in short creep at constant effective stress. Experimental test results of chromium-nickel steel Kh18N10Т short creep at room temperature have been given. The distinctive feature of the tests is studying the short creep in a wide range of stress: from the initial yield limit till fracture stress. The experiments were conducted in incrementally increasing load (fluid pressure in a closed pipe) at constant rate of constant effective stress at every stage. It has been demonstrated that the lay-down conditions of the load change, providing constancy of true stress intensity, are violated at rather high stress. The data obtained can be used in engineering calculations and design, as well as in the development of new metal processing technologies. Effective methods for analyzing deformations have been proposed, which make it possible to separate them into the plastic component and deformation due to short-term creep. These methods can be successfully applied both under conditions of stepwise loading and under continuous loading. Interesting results include confirmation of the hypothesis about the similarity of creep curves with sufficient accuracy for practical use. This opens the door to more efficient management of materials under variable load conditions, and provides engineers and designers with valuable tools to optimize processes and improve structural reliability. Additional studies also consider examples of the occurrence and development of deformations during short-term creep under conditions of reduced stress. This allows for a better understanding of the mechanisms underlying these phenomena and the development of more effective deformation prevention strategies in various engineering applications.

keywords Short creep, viscous deformation, incrementally increasing load, creep at constant effective stress, viscoplastic deformation
References

1. Vologzhanina S., Igolkin A., Peregudov A., Baranov I., Martyushev N. Effect of the deformation degree at low temperatures on the phase transformations and properties of metastable austenitic steels. Obrabotka Metallov. 2022. Vol. 24. No. 1. pp. 73–86. DOI: 10.17212/1994-6309-2022-24.1-73-86
2. Maksarov V. V., Popov M. A., Zakharova V. P. Influence of magneticabrasive machining parameters on ceramic cutting tools for technological quality assurance of precision products from cold-resistant steels. Chernye Metally. 2023. No. 1. pp. 67–73.
3. Admakin M. A., Khalimonenko A. D., Zakharova V. P., Van Dao N. Machinability of cutting of low-magnetic high-manganese steels. Chernye Metally. 2023. No. 1. pp. 82–87.
4. Bolobov V. I., Popov G. G. Methodology for testing pipeline steels for resistance to grooving corrosion. Journal of Mining Institute. 2021. Vol. 252. No. 6. pp. 854–860. DOI: 10.31897/PMI.2021.6.7
5. Latyshev D., Mitukov A., Petrov M., Popov V. Viscoplastic properties of chromium-nickel steel at increasing and constant loads. Journal of Engineering Science. 2012. Vol. 2. No. 147. pp. 151–160.
6. Skelton R. P. Deformation, diffusion and ductility during creep-continuous void nucleation and creep-fatigue damage. Materials at High Temperatures. 2017. Vol. 34. No. 1. pp. 121–133. DOI: 10.1080/09603409.2016.1252888
7. Sandatrom R., Jun-Jing H. Prediction of creep ductility for austenitic stainless steels and copper. Materials at High Temperatures. 2022. Vol. 39. No. 1. pp. 1–9. DOI: 10.1080/09603409.2022.2039497
8. Bazhin V. Y., Issa B. Influence of heat treatment on the microstructure of steel coils of a heating tube furnace. Journal of Mining Institute. 2021. Vol. 249. No. 5. pp. 393–400. DOI: 10.31897/PMI.2021.3.8
9. Goryushkin D. S., Zuev Yu. S., Stakheev A. V. Creep of materials in special structures. Journal of «Almaz–Antey» Air and Space Defence Corporation. 2016. No. 1. pp. 106–113. DOI: 10.38013/2542-0542-2016-1-106-113
10. Holdsworth S. Creep-Ductility of High Temperature Steels: A Review. Metals. 2019. Vol. 9. No. 3. p. 342 DOI: 10.3390/met9030342
11. Bolobov V., Martynenko Y. V., Voronov V., Latipov I., Popov G. Improvement of the Liquefied Natural Gas Vapor Utilization System Using a Gas Ejector. Inventions. 2022. No. 7. p. 14. DOI: 10.3390/inventions7010014
12. Maksarov V. V., Keksin A. I., Filipenko I. A. Improvement of magnetic-abrasive finishing of nonuniform products made of high-speed steel in digital conditions. Key Engineering Materials. 2020. Vol. 834. pp. 71–77. DOI: 10.4028/www.scientific.net/KEM.836.71
13. Keksin A. I., Sorokopud N. I., Zakirov N. N. Peculiarities of Abrasive Finishing of Surfaces of Parts Made of Aluminium Alloy of АМts Grade in Magnetic Field. International Journal of Engineering, Transactions C: Aspects. 2024. Vol. 37. No. 06. pp. 1098–1105. DOI: 10.5829/ije.2024.37.06c.06
14. Pryakhin E. I., Sharapova D. M. Understanding the structure and properties of the heat affected zone in welds and model specimens of high-strength low-alloy steels after simulated heat cycles. CIS Iron and Steel Review. 2020. Vol. 19. pp. 60–65.
15. Volokitina I., Siziakova E., Fediuk R., Kolesnikov A. Development of a thermomechanical treatment mode for stainless-steel rings. Materials. 2022. Vol. 15. No. 14. DOI: 10.3390/ma15144930
16. Volkov I. A., Igumnov L. A., Kazakov D. A., Shishulin D. N., Smetanin I. V. Determining relations of unsteady creep in a complex stress state. Problemy prochnosti i plastichnosti. 2016. Vol. 78. No. 4. pp. 436–451. DOI: 10.32326/1814-9146-2016-78-4-436-451
17. Andrade E. On the viscous flow in metals, and allied phenomena. Proceedings of the Royal society, Ser. A. 1910. Vol. 84 (A567). pp. 1–12.
18. Bondarev B. A., Starodubtseva T. N. Creep of composite materials and mathematical interpretation of experimental research re sults. Building materials. 2019. No. 9. pp. 76–82. DOI: 10.31659/0585-430X-2019-774-9-76-82
19. Belomyttsev M. Yu., Molyarov V. G. Creep resistance of ferriticmartensitic steel 16Cr12MoWSiVNbB (EP-823). Izvestiya. Ferrous Metallurgy. 2019. Vol. 62. No. 4, pp. 290–302. DOI: 10.17073/0368-0797-2019-4-290-302
20. Sergeeva O. A., Mishakin V. V., Klyushnikov V. A. Investigation of the relationship of cyclic deformation characteristics with elasticity modules of metastable austenitic steels. Problems of strength and plasticity. 2014. Vol. 86. No. 1. pp. 94–104. DOI: 10.32326/1814-9146-2024-86-1-94-105
21. Zhukov A. Unloading of plastically deformed metals and sequential loading. Byulleten AN SSSR. Mekhanika tverdykh tel. 1989. Vol. 2. pp. 179–183.
22. Zhukov A. Non-ferrous metals and alloys creep at room temperature beyond elasticity. Inzherenyi zhurnal. 1963. Vol. 2. pp. 409–413.
23. Kachanov M., Mishakin V., Pronina Yu. On low cycle fatigue of austenitic steel. Part II: Extraction of information on microcrack density from a combination of the acoustic and eddy current data. International Journal Engineering Science. 2021. Vol. 169. Article No. 103569. DOI: 10.1016/j.ijengsci.2021.103569
24. Mishakin V. V., Gonchar A. V., Kurashkin K. V., Klyushnikov V. A., Kachanov M. On low cycle fatigue of austenitic steel. Part I: Changes of Poisson’s ratio and elastic anisotropy. International Journal Engineering Science. 2021. Vol. 168. Article No. 103567. DOI: 10.1016/j.ijengsci.2021.103567
25. Agamirov L. V., Vestyak V. A. Statistical estimation of fatigue resistance of parts based on the theory of similarity of fatigue failure. Izv. RAS. MTT. 2020. No. 3. pp. 143–152. DOI: 10.31857/S0572329920030022
26. Agamirov L. V., Stashkiv M. S., Shevchenko I. V. An energy model for reducing the endurance limit of aviation materials as a result of preliminary cyclic loading. The aviation industry. 2019.No. 3–4. pp. 67–73.
27. Vasin R. Constitutive equations of plasticity theory. Itogi nauki i tekhniki. 1990. Vol. 21. pp. 3–75.
28. Petinov S., Guchinsky R. Criteria for fatigue failure of materials: Application in fatigue assessment of structures. Advanced Engineering Forum. 2018. Vol. 26. pp. 1–8. DOI: 10.4028/www.scientific.net/AEF.26.1
29. Temis Yu. M., Khudyakova A. D. Model of non-isothermal elastoplastic deformation of structural materials under complex loading. Mathematical modeling and numerical methods. 2017. Iss. 15. pp. 20–37. DOI: 10.18698/2309-3684-2017-3-2035
30. Cai M. C., Niu L. S., Ma X. F., Shi H. J. A constitutive description of the strain rate and temperature effects on the mechanical behavior of materials. Mechanics of Materials. 2010. Vol. 42. pp. 774–781. DOI: 10.1016/j.mechmat.2010.06.006
31. Nguyen T. T., Jeong T. M., Erten D. T., Yoon K. B.Creep deformation and rupture behaviour of service-exposed super 304H steel boiler tubes. Materials at High Temperatures. 2021. Vol. 38. No. 1. pp. 61–72. DOI: 10.1080/09603409.2020.1830609
32. Wang Y., Zhang W., Wang Y., Lim Y. C., Yu X., Feng Z. Experimental Evaluation of Localized Creep Deformation in Grade 91 Steel Weldments. Materials Science and Engineering A. 2021. Vol. 799. pp. 140356. DOI: 10.1016/j.msea.2020.140356
33. Volkov I. A., Igumnov L. A., Shishulin D. N., Belov A. A. Estimation of the resource characteristics of polycrystalline structural alloys under cyclic thermomechanical loading. Problemy prochnosti i plastichnosti. 2021. Vol. 83. No. 4. pp. 481–504. DOI: 10.32326/1814-9146-2021-83-4-481-504
34. Giginyak F. F., Maslo O. M. A relationship between damage in 10GN2MFA steel and low-cycle strain-controlled loading at different deformation frequencies. Strength of Materials. 2017. Vol. 49. No. 1. pp. 343–348. DOI: 10.1007/s11223-017-9874-4
35. Sakane M., Kobayashi H., Ohki R., Itoh T. Creep void formation and rupture lifetime in multiaxial stress states. Key Engineering Materials. 2019. Vol. 795. pp. 159–164. DOI: 10.4028/www.scientific.net/KEM.795.159
36. Abdelwahab Agagina, Mikhailov A.V. The influence of iron ore dust on the wear of the surface of hydraulic cylinder rods of a quarry excavator. Gorny informatsionno-analiticheskiy byulleten. 2023. No. 11-1. pp. 5–23. DOI: 10.25018/0236_1493_2023_111_0_5
37. Kuzkin A. Yu., Zadkov D. A., Skeeba V. Yu., Kukartsev V. V., Tynchenko Ya. A. Viscoplastic properties of chromium-nickel steel in short-term creep under constant stress. Part 1. CIS Iron and Steel Review. 2024. Vol. 27. pp. 71–77.

Full content Viscoplastic properties of chromium-nickel steel in short-term creep under constant stress. Part 2
Back