Journals →  Tsvetnye Metally →  2024 →  #10 →  Back

GEOLOGY, MINING, BENEFICIATION
ArticleName Rare and minor minerals of copper-nickel sulfide ores of the Talnakh ore cluster and their impact on beneficiation indicators
DOI 10.17580/tsm.2024.10.03
ArticleAuthor Khashkovskaya T. N., Bryanskaya A. A., Pelipenko Ya. M.
ArticleAuthorData

Gipronickel Institute LLC, St. Petersburg, Russia

T. N. Khashkovskaya, Chief Specialist, Geometallurgical Laboratory, e-mail: KhashkovskyayTN@nornik.ru
A. A. Bryanskaya, Senior Researcher, Geometallurgical Laboratory, e-mail: BryanskayaAnA@nornik.ru

 

Nornickel Technical Services, Talnakh, Russia
Ya. M. Pelipenko, Senior Geologist, e-mail: PelipenkoYaM@nornik.ru

Abstract

The article presents the results of mineralogical observations in the exploration drill holes in the course of geometallurgcial mapping of the Talnakh ore cluster ores, which is carried out by the Geometallurgical Laboratory under contracts with PJSC MMC Norilsk Nickel`s Nornickel Technical Services. The article considers the influence of minerals of the millerite-vallerite-pyrite ore association on the process parameters during beneficiation experiments according to the current 2 PK-TOF scheme and the design 3 PK-TOF scheme of the Polar Division of PJSC MMC Norilsk Nickel. In particular, the article presents data on the distribution of nickel with millerite in small aggregates with chalcopyrite in copper concentrate, the transition of copper to tailings with vallerite, as well as a decrease in the recovery and content of nickel and copper in the collective concentrate from ores with pyrrhotite-vallerite-pyrite minera lization with nickeliferous pyrite and vallerite. The article briefly describes the beneficiation scheme for vallerite-containing ores at the 3 PK-TOF, and the classification of “cuprous” ores based on the vallerite content in serpentinized host rocks. Information on the form of rare minerals jerfisherite and wyalsovite found in ores is also given. The occurrence of water-soluble nickel sulphates in vein disseminated ores of the Mayak mine is described, presence of which may distort the data on nickel content in ores. Chemical compositions of such minerals as millerite, valleriite, tochilinite, nickel pyrite, jerfisherite, wyalsovite, retgersite, nickel hexahydrite and dwornikite are presented. Mineralogical observations were carried out using optical methods, X-ray diffraction, and X-ray microprobe employing Tescan Vega II LMN electron microscope equipped with an X-Act energy-dispersive detector.

keywords Millerite, valleriite, tochilinite, chalcopyrite, pyrite, secondary iron oxides, nickel sulphates, recovery, rich, disseminated, vein-disseminated (“cupriferous”) ores, ore associations
References

1. Genkin A. D., Distler V. V., Gladyshev G. D. et al. Copper-nickel sulfide ores of Norilsk deposits. Moscow: Nauka, 1981. 234 p.
2. Sluzhenikin S. F. Platinum-copper-nickel and platinum ores of the Norilsk region and their ore mineralization. Zhurnal Rossiyskogo khimicheskogo obshchestva imeni D. I. Mendeleeva. 2010. Vol. LIV, No. 2. pp. 38–49.
3. Laptev Yu. V. Sulfidization of vallerite x(Fe, Cu, Ni)S·yMg(OH)2·zAl(OH)3 in aqueous SO2 solutions. Vestnik Otdeleniya nauk o Zemle RAN. 2009. No. 1.
4. Goryachev A. A. Feasibility demonstration and development of thermo hydrochemical technology for processing copper-nickel ores and technogenic products using ammonium sulfate: thesis of inauguration of Dissertation … of Candidate of Engineering Sciences; Institute of North Industrial Ecology Problems, Kola Science Center of the RUS. Moscow, 2024. 25 p.
5. Onufriyonok V. V. Crystal-chemical transformation of pyrrhotite-pyrite induced by cation vacancies. Sovremennye naukoemkie tekhnologii. 2013. No. 5. pp. 116–122.
6. Gore T. E. A study of millerite from Cu – Ni – PGE footwall veins, sudbury, on: crystal-chemistry, morphology, & geological implications: dissertation. University Sudbury, Ontario, Canada, 2020.
7. Wang H., Feng L., Manica R., Liu Q. Selective depression of millerite (β-NiS) by polysaccharides in alkaline solutions in Cu – Ni sulphides flotation separation. Minerals Engineering. 2021. Vol. 172. 107139.
8. Mikhlin Yu. L., Romanchenko A. S., Tomashevich E. V., Volochaev M. N. et al. XPS and XANES study of layered mineral valleriite. Journal of Structural Chemistry. 2017. No. 58. pp. 1137–1143.
9. Mikhlin Y., Likhatski M., Romanchenko A., Vorobyev S. et al. Valleriite-containing ore from Kingash deposit (Siberia, Russia): Mossbauer and X-ray photoelectron spectroscopy characterization, thermal and interfacial pro perties. Journal of Siberian Federal University. Chemistry. 2022. Vol. 15, Iss. 3. pp. 303–317.
10. Mucke A. Rewiev on mackinawite and valleriite: formulae, localities, associations and intergrowth of the minerals, mode of formation and optical features in reflected light. Journal of earth Science & Climatic Change. 2017. No. 8. 419.
11. Zaccarini F., Thalhammer O. A. R., Princivalle F., Lenaz D. et al. Djerfisherite in the Guli dunite complex, Polar Siberia: a primary or metasomatic phase? The Canadian Mineralogist. 2007. No. 45. pp. 1201–1211.
12. Dmitrijeva M., Cook N. J., Ehrig K. et al. Multivariate statistical analysis of trace elements in pyrite: prediction, bais and artefakts in defining mineral signatures. Minerals. 2020. Vol. 10. p. 61.

Language of full-text russian
Full content Buy
Back