Journals →  Chernye Metally →  2024 →  #10 →  Back

75th anniversary of the Dept. of Metal Science, Thermal and Laser Processing of Metals of PNRPU
ArticleName Increasing the durability of highly loaded threaded connections by induction heat treatment
DOI 10.17580/chm.2024.10.07
ArticleAuthor S. N. Moltsen, I. V. Shestakova, A. V. Kravchenko, Yu. N. Simonov
ArticleAuthorData

JSC ELKAM-Neftemash, Perm, Russia1 ; Perm National Research Polytechnic University, Perm, Russia2

S. N. Moltsen, Quality Director1, Postgraduate Student, Dept. of Metal Science, Thermal and Laser Metal Processing2, e-mail: stanislav@vputehod.ru

A. V. Kravchenko, Head of Quality Control1, Postgraduate Student, Dept. of Metal Science, Thermal and Laser Metal Processing2, e-mail: andrew@vputehod.ru

 

Perm National Research Polytechnic University, Perm, Russia
I. V. Shestakova, Student, Dept. of Metal Science, Thermal and Laser Metal Processing, e-mail: sestakovailona741@gmail.com
Yu. N. Simonov, Dr. Eng., Prof., Head of the Dept. of Metal Science, Thermal and Laser Metal Processing, e-mail: simonov@pstu.ru

Abstract

The authors present results of testing Induction Heat Treatment (IHT) to enhance the mechanical properties of 40Kh steel, used for sucker rods in thin-walled rod deep well pumps (SRPs). They describe IHT benefits including rapid heating, surface decarburization minimization, and energy efficiency. Calculations for necessary hardening depth and justifications for equipment selection in conducting IHT and temperature measurement are provided, along with main technical specifications of the inductor and pyrometer. The impact of IHT on steel’s microstructure, strength, and fatigue resistance is analyzed, showing microhardness changes in the hardened layer and fatigue test results of full-sized sucker rod samples under transverse bending during rotation. IHT with quenching at 850 ˚C in water and tempering at 400 оC is shown to significantly improve fatigue resistance compared to thread rolling and bulk hardening using thermally hardened UNS G41400 steel of class D strength. An economic analysis demonstrates the potential for cost reduction and increased profitability in SRP production through the implementation of IHT in the manufacturing process of 40Kh steel pump rods.
The work was carried out with the support of JSC ELKAM-Neftemash.

keywords Induction heat treatment, local hardening, microstructure, fatigue, downhole pumping equipment, subsurface pump, stress distribution, sucker rod, sorbite and roostite
References

1. American Petroleum Institute. API 11AX: Specification for subsurface sucker rod pumps and fittings. 13th ed., Washington, D.C. : API Publishing Services, 2022. 218 p.
2. Moltsen S. N., Kravchenko A. V., Simonov Yu. N., Polezhaev R. M. Increasing the durability of threaded connections of rods under cyclic loading. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie. 2021. Vol. 23. No. 2. pp. 27–35.
3. GOST 31835–2012. Well sucker-rod pumps. General technical requirements. Introduced: 01.01.2014.
4. Brennan, F. P. Fatigue and fracture mechanics analysis of threaded connections. Department of Mechanical Engineering University College London, 1992. 402 p.
5. Moltsen S. N., Kravchenko A. V., Simonov Yu. N., Polezhaev R. M. Quality assurance through control of critical deviations of microstructure. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie. 2021. Vol. 23. No. 1. pp. 36–45.
6. Moltsen S. N., Kravchenko A. V., Simonov Yu. N. Effect of corrosion damage on the performance of thin-walled sucker-rod pump rods. Modeling and calculation. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie. 2022. Vol. 24. No. 1. pp. 5–14. DOI: 10.15593/2224-9877/2022.1.01
7. Shtremel M. A. Destruction. In 2 books. Book 1. Destruction. Monograph. Moscow : Izdatelskiy dom MISIS, 2015. 976 p.
8. Kushnarenko V. M., Repyakh V. S., Chirkov E. Yu., Kushnarenko E. V. Defects and damages of parts and structures: monograph. Orenburg : OGU, 2011. 402 p.
9. Fractography and Atlas of Fractographs. Metals Handbook. Translated from English by E. A. Shur, edited by M. L. Bernshteyn. Moscow : Metallurgiya, 1982. 489 p.
10. Rudnev V., Akers R. R. et al. ASM Handbook Vol. 4C: Induction Heating and Heat Treatment, 2014. ASM International, 2014. 821 p.
11. Simonov Yu. N., Simonov M. Yu. Physics of strength and mechanical testing of metals. Perm : Izdatelstvo PNIPU, 2020. pp. 56–90.
12. GOST 31825–2012. Sucker rods, mouth stocks and couplings for them. Specifications. Introduced: 01.01.2014.
13. Heidersbach R. Metallurgy and corrosion control in oil and gas production. John Wiley & Sons, Inc., 2011. 293 p.
14. Kravchenko A. V., Moltsen S. N., Simonov Yu. N., Polezhaev R. M. et al. Analysis and selection of methods for testing steels for resistance to sulfide stress corrosion cracking in H2S-containing environments. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie. 2021. Vol. 23. No. 2. pp. 43–54.
15. GOST 4543–71. Structural alloy steel bars. Specifications. Introduced: 01.01.1973.
16. GOST 18895–97. Steel. Method of photoelectric spectral analysis. Introduced: 01.01.1998.
17. GOST 1497–84. Metals. Methods of tension test. Introduced: 01.01.1986.
18. Georgyev M. N., Simonov Yu. N. Crack resistance of iron-carbon alloys: monograph. Perm : Izdatelstvo PNIPU, 2013. 418 p.
19. Tada H., Paris P. C., Irwin G. R. The stress analysis of cracks handbook. New York : Wiley, 2000. pp. 52, 53.
20. Irwin G. R. Plastic zone near a crack and fracture toughness. Mech. Metall. Behavior of Sheet Mater. Proc. 7th Sagamore Ordinance Mater. Res. Conf., New York, 1960. Vol. 4. pp. 63–77.
21. Yokobori T. Fatigue crack propagation as successive stochastic processes and fatigue fracture toughness. Proc. Mech. Behavior of Materials, Vol. II, Japan Soc. Mats. Science. 1972. pp. 233–239.
22. Toktaş G. Fatigue strength-load cycle relationships for ferrous materials. Encyclopedia of Tribology. Springer, Boston, MA. 2013. pp. 1052–1059. DOI: 10.1007/978-0-387-92897-5_278
23. Boyer H. E. Atlas of fatigue curves. ASM, 1990. 534 p.
24. Callister W. D., JR. Materials science and engineering. Wiley, 2014. 990 p.
25. Moltsen S. N., Shestakova I. V., Kravchenko A. V., Simonov Yu. N. Local hardening of cyclically loaded parts by induction heat treatment. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie. 2023. No. 4. pp. 81–91.
26. GOST 25.502–79. Strength analysis and testing in machine building. Methods of metals mechanical testing. Methods of fatigue testing. Introduced: 01.01.1981.

Language of full-text russian
Full content Buy
Back