Журналы →  Chernye Metally →  2024 →  №10 →  Назад

75th anniversary of the Dept. of Metal Science, Thermal and Laser Processing of Metals of PNRPU
Название Peculiarities of influence of phase composition on the elasticity of sensitive elements of oscillatory systems made of iron-based alloys
DOI 10.17580/chm.2024.10.06
Автор I. M. Russkikh,Yu. N. Simonov, A. A. Shatsov
Информация об авторе

Perm National Research Polytechnic University, Perm, Russia
I. M. Russkikh, Postgraduate Student, Dept. of Metal Science, Thermal and Laser Processing of Metals, e-mail: russkix-igor@mail.ru
Yu. N. Simonov, Dr. Eng., Prof., Head of the Dept. of Metal Science, Thermal and Laser Processing of Metals, e-mail: simonov@pstu.ru
A. A. Shatsov, Dr. Eng., Prof., Dept. of Metal Science, Thermal and Laser Processing of Metals, e-mail: shatsov@pstu.ru

Реферат

The influence of phase composition of low-carbon martensitic steel (LMS) 08Kh2G2NMFB and elinvar alloy 21NKMT on elastic characteristics (resonance frequency fres., different frequency Δf and elastic modulus E) has been investigated. The mechanical properties were determined. The structure of the investigated materials was studied by diffraction and metallographic methods. The principal structural difference between LMS and elinvar alloy is that LMS contains in its structure about ≈ 95 % of lath martensite, while elinvar alloy can contain up to 50 % of lath martensite and also up to 50 % of reverted austenite. A large number of interfacial boundaries in a material used as a sensing element of an oscillating system represent resistance zones that can contribute energy losses during elastic vibrations. It was found that the tangent of the angle of inclination of the fracture diagram of 08Cr2Mn2NiMoNb material is greater than that of 21NKMT, which indicates a higher value of the elastic modulus. The strength characteristics of 21NKMT alloy are higher than those of 08Kh2G2NMFB (σв – 21 %, HRC – 20 %). However, the low-carbon martensitic steel has better plasticity (δ – 7 %, Ψ – 16 %) and elastic properties (frequency difference Δf – 859 %, resonance frequency fres – 213 %). The values of temperature frequency coefficient (TFC) for LMS 08Kh2G2NMFB and alloy 21NKMT corresponding to the range of - (122÷125)×10-6 1/ºC and - (38÷41)×10-6 1/ºC, respectively, have been calculated. It is established that the temperature dependence of the resonance frequency of LMC 08Kh2G2NMFB is lower than that of alloy 21NKMT, but has changes closer to the linear form.

Ключевые слова Resonant frequency, different frequency, elastic oscillations, temperature coefficient of frequency, low-carbon martensitic steels, elinvar alloys, elastic modulus
Библиографический список

1. Krasnykh V. I., Zhdanova A. S., Garanzha T. V. Precision alloys with specified elastic properties: the need for a new life. Stal. 2015. No. 7. pp. 60–66.
2. Lakhtin Yu. M. Metal science and heat treatment of metals. Moscow : Metallurgiya, 1983. 359 p.
3. Arzamasov B. N., Solovieva T. V., Gerasimov S. A. Handbook of structural materials. Moscow : Izdatelstvo MGTU imeni N. E. Baumana, 2006. 640 p.
4. Egarmin N. E., Yurin V. E. Introduction to the theory of vibration gyroscopes. Moscow : BINOM, 1993. 111 p.
5. Shvetsov V. V., Simonov Yu. N., Kleyner L. M. Structure and mechanical properties of maraging and low-carbon martensitic steels. Metallovedenie i termicheskaya obrabotka metallov. 2005. No. 1. pp. 32–35.
6. Gao B. Yu., Li Wang, Yi Liu, Junliang Liu et al. Achieving ultrahigh strength by tuning the hierarchical structure of low-carbon martensitic steel. Materials Science and Engineering: A. 2023. Vol. 881. pp. 2–12.
7. Russkikh I. M., Shatsov A. A. Effect of thermal cycling treatment on the properties of lowcarbon martensitic steel 15Kh2G2NMFB for precision instrument parts. Metallovedenie i termicheskaya obrabotka metallov. 2023. No. 3 (813). pp. 3–8.
8. Schastlivtsev V. M., Kaletina Yu. V., Fokina E. A., Kaletin A. Yu. On the role of residual austenite in the structure of alloy steels and the influence of external influences thereon. Fizika metallov i metallovedenie. 2014. Vol. 115. No. 9. pp. 962–976.
9. Long X. Y., Sun D. Y., Wang K., Zhang F. C. et al. Effect of carbon distribution range in mixed bainite / martensite / retained austenite microstructure on mechanical properties. Journal of Materials Research and Technology. 2022. Vol. 17. pp. 898–912.
10. Li Y., San Martın David, Wang J. L., Wang C. C. et al. A review of the thermal stability of metastable austenite in steels: Martensite formation. J. Mater. Sci. Technol. 2021. Vol. 881. pp. 302–319.
11. Tian J., Xu G., Zhou M., Hu H. Refined bainite microstructure and mechanical properties of a high-strength low-carbon bainitic steel treated by austempering below and above MS steel. ResIntell. 2018. Vol. 89. pp. 392–411.
12. GOST 1497–84. Metals. Methods of tension test. Introduced: 01.01.1986.
13. Molotilov B.V. Precision alloys. Handbook. Moscow : Metallurgiya, 1974. 448 p.
14. Perkas M. D., Strug M. D., Rusanenko V. V. Elinvar maraging steels with high elastic limit. Metallovedenie i termicheskaya obrabotka metallov. 1991. No. 8. pp. 40–41.
15. Morsdorf L., Emelina E., Gault B., Herbig M. et al. Carbon redistribution in quenched and tempered lath martensite. ActaMaterialia. 2021. Vol. 205. 116521.

Language of full-text русский
Полный текст статьи Получить
Назад