Журналы →  Gornyi Zhurnal →  2024 →  №9 →  Назад

GEOLOGY, EXPLORATION AND SURVEY OF SOLD MINERALS. MINERAGENY
Название Geological and geophysical data interpretation for deep structure study of the Kabul Massif
DOI 10.17 580/gzh.2024.09.11
Автор Talovina I. V., Mangal F., Smuk G. V., Krikun N. S.
Информация об авторе

Empress Catherine II Saint-Petersburg Mining University, Saint-Petersburg, Russia

I. V. Talovina, Head of Department, Professor, Doctor of Geological and Mineralogical Sciences
F. Mangal, Post-Graduate Student
G. V. Smuk, Student, georgii.smuk@gmail.com
N. S. Krikun, Assistant

Реферат

The scope of the research embraced collection, processing, analysis and interpretation of differenttype geological and geophysical data on the Kabul Massif as an autonomous crustal block located in the center of Afghanistan. Reconstruction of geodynamic situations in the test crust area can help investigate global history of geological development in the region, and review concepts on formation of platinum group, chromium, nickel etc. mineralization with a view to assessing mineragenic potential of the area, which defines the relevance of this research. Based on the data on gravitational and magnetic fields, as well as their diverse transformations, the studies verified the basic ideas on the disjunctive structure of the region and on the physical layout of ophiolites. The analysis of hypocenters of earthquakes over the last one hundred years provided information on the deep structure of the specified suites and determined the dominant transpression model of development of the Kabul Block. The adjoint Chaman Fault, which is a leftward regional shear fault, is comprehensively studied. The petrophysical characteristics of ophiolites sampled during field tests in the districts of Lowgar and Kohe Safi are analyzed. The obtained data on the density and magnetic sensitivity of rocks in combination with the plotted maps of different potential fields are used to build a petrophysical deep-structure model of the test region. An important role in reconstruction of deep-seated faults is given to the specific points obtained from Euler deconvolution and with respect to hypocenters of earthquakes. Based on the geological and geophysical data interpretation, the three-dimensional geology and tectonics model is built with the block zonality adopted in conformance with the concept of tectonics of lithosphere plates.

Ключевые слова Afghanistan, Kabul Massif, ophiolites, earthquake analysis, potential fields, petrophysical modeling
Библиографический список

1. Simoniya N. A. (Ed.). Encyclopedia of World’s Countries. Moscow : Ekonomika, 2004. 1319 p.
2. Gulbin Yu. L., Akbarpuran Khaiyati S. A., Sirotkin A. N. Mineral composition and thermobarometry of metamorphic rocks of Western Ny Friesland, Svalbard. Journal of Mining Institute. 2023. Vol. 263. pp. 657–673.
3. Tolstykh N. D., Krivolutskaya N. A., Kanhimbue L. S., Gongalsky B. I., Kuzmin I. A. Mineralogical zoning of the PGE-Cu-Ni orebodies in the central part of Oktyabrsky Deposit, Norilsk District, Russia. Mineralogical Magazine. 2024. DOI: 10.1180/mgm.2024.20
4. Galimov E. M., Kaminsky F. V. Diamond in the oceanic lithosphere. Volcanic diamonds and diamonds in ophiolites. Geochemistry International. 2021. Vol. 59, No. 1. pp. 1–11.
5. Polyanin V. S. Ophiolites of the Ural–Asia mobile belt : Structure, substance and minerageny evolution, models of formation of mineral deposits. Georesursy. 2006. No. 2(19). pp. 31–36.
6. Slavin V. I. Tectonics of Afghanistan. Moscow : Nedra, 1976. 205 p.
7. Gusev I. A. Tectonics of the Kabul Massif, Afghanistan : Thesis of Dissertation of Candidate of Geological and Mineralogical Sciences. Dushanbe, 1984. 19 p.
8. Egorov A. S., Bolshakova N. V., Kalinin D. F., Ageev A. S. Deep structure, tectonics and geodynamics of the Sea of Okhotsk region and structures of its folded frame. Journal of Mining Institute. 2022. Vol. 257. pp. 703–719.
9. Seminskii K. Zh. Hierarchy in the zone-block lithospheric structure of Central and Eastern Asia. Russian Geology and Geophysics. 2008. Vol. 49, No. 10. pp. 771–779.
10. Siehl A. Structural setting and evolution of the Afghan orogenic segment—A review. Geological Evolution of Central Asian Basins and the Western Tien Shan Range : Special Publications. London : Geological Society, 2017. Vol. 427. pp. 57–88.
11. Abdullah Sh., Chmyriov V. M. Geological Map of Afghanistan. Scale 1:500 000. Kabul, 1977.
12. Sirotkin A. N., Evdokimov A. N. Vendian age of igneous rocks of the Chamberlain valley area (Northern part of the Wedel Jarlsberg Land, Svalbard Archipelago). Journal of Mining Institute. 2022. Vol. 255. pp. 419–434.
13. Earthquake Data. U.S. Geological Survey. Available at: https://www.usgs.gov/programs/earthquake-hazards/science/earthquake-data (accessed: 15.07.2024).
14. Senchina N., Grigoriev G., Gulin V. Combining non-seismic and seismic information for geological understanding – a case study. Environmental Risks and Safety in Mechanical Engineering : International Scientific and Practical Conference. 2023. E3S Web of Conferences. 2023. Vol. 376. ID 01067.
15. Saibi H., Azizi M., Mogren S. Structural investigations of Afghanistan deduced from remote sensing and potential field data. Acta Geophysica. 2016. Vol. 64, Iss. 4. pp. 978–1003.
16. Gravity Grids & Models. Bureau Gravimetrique International. Available at: https://bgi.obs-mip.fr/grids-and-models-2/ (accessed: 15.07.2024).
17. Solano-Acosta J. D., Soesoo A., Hints R. New insights of the crustal structure across Estonia using satellite potential fields derived from WGM-2012 gravity data and EMAG2v3 magnetic data. Tectonophysics. 2023. Vol. 846. ID 229656.
18. Kosnyreva M. V., Zolotaya L. A. Interpretation of the potential fields of the area of Ladoga conductivity anomaly. Engineering and Mining Geophysics : Proceedings of the 14th Conference and Exhibition. Almaty, 2018. DOI: 10.3997/2214-4609.201800579
19. Azizi M., Saibi H. Integrating gravity data with remotely sensed data for structural investigation of the Aynak–Logar Valley, Eastern Afghanistan, and the surrounding area. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2015. Vol. 8, No. 2. pp. 816–824.
20. Bonvalot S., Balmino G., Briais A., Kuhn M., Peyrefitte A. et al. World Gravity Map: Carte Gravimetrique Monocale. Scale 1:50 000 000. Paris : BGI-CGMW-CNES-IRD, 2012.
21. Gorodnitskiy A. M. (Ed.). Nature of Magnetic Anomalies and Structure of the Oceanic Crust. Moscow : Izdatelstvo VNIRO, 1996. 283 p.
22. Aleksandrova T. N., Chanturiya A. V., Kuznetsov V. V. Mineralogical and technological features and patterns of selective disintegration of ferruginous quartzites of the Mikhailovskoye deposit. Journal of Mining Institute. 2022. Vol. 256. pp. 517–526.
23. World Magnetic Model. National Centers for Environmental Information. Available at: https://www.ncei.noaa.gov/products/world-magnetic-model (accessed: 15.07.2024).
24. Ravat D. Reduction to Pole. Encyclopedia of Geomagnetism and Paleomagnetism. Encyclopedia of Earth Sciences Series. Dordrecht : Springer, 2007. pp. 856–858.
25. Movchan I. B., Shaygallyamova Z. I., Yakovleva A. A. Identification of structural control factors of primary gold ore occurrences by method of unmanned aeromagnetic survey by the example of the Neryungrisky district of Yakutia. Journal of Mining Institute. 2022. Vol. 254. pp. 217–233.
26. Senchina N. P. Euler deconvolution in the interpretation of the data of potential fields of the Kazan–Kazhimsky aulacogen. Mezhdunarodnyi nauchno-issledovatelskiy zhurnal. 2021. Vol. 11-2(113). pp. 7–13.
27. Blokh Yu. I. Interpretation of Gravitational and Magnetic Anomalies : Tutorial. Moscow, 2009. 232 p.
28. Filatov V. V., Ivanchenko V. S., Glukhikh I. I. Petrophysics. Petromagnetism in Mining Geophysics. Yekaterinburg : Izdatelstvo UGGU, 2011. 414 p.
29. Ivanchenko V. S., Bazhenova E. A., Popov M. P., Peleshko O. P. The study of magnetic susceptibility of rocks and izumrudnyj sludio in the Mariinsky emerald–beryllium deposit (Middle Urals). Uralskiy geofizicheskiy vestnik. 2018. No. 3(33). pp. 24–29.
30. Gaweish W. R., Marzouk H. H., Petrov A. V., Maraev I. A. Magnetic data interpretation to determine the depth of basement rocks and structural elements of Mandisha village, El-Bahariya oasis, Western desert, Egypt. Izvestiya Uralskogo gosudarstvennogo gornogo universiteta. 2019. No. 2(54). pp. 7–19.
31. Filippovich A. V. Physical and geological modeling of the Bodrak suite structures with regard to paleomagnetic data : Thesis of Dissertation of Candidate of Geological and Mineralogical Sciences. Moscow, 2022. 25 p.

32. Wheeler R. L., Bufe C. G., Johnson M. L., Dart R. L. Seismotectonic Map of Afghanistan, with Annotated Bibliography : Open-File Report 2005–1264. Reston : U.S. Geological Survey, 2005. 34 p.
33. Kalinin D. F., Egorov А. S., Bolshakova N. V. Oil and gas potential of the West Kamchatka coast and its relation to the structural and tectonic structure of the Sea of Okhotsk region based on geophysical data. Vestnik KRAUNTs. Nauki o Zemle. 2022. No. 1(53). pp. 59–75.
34. Glazunov V. V., Ageev A. S., Gorelik G. D., Sarapulkina T. V. Results of comprehensive geophysical studies on the search for crypts on the territory of suburban necropolis of Tauric Chersonese in the Karantinnaya Balka. Journal of Mining Institute. 2021. Vol. 247. pp. 12–19.
35. Nedosekova I. L. Carbonatite complexes of the South Urals: Geochemical features, ore mineralization, and geodynamic settings. Journal of Mining Institute. 2022. Vol. 255. pp. 349–368.
36. Sadykova Z. I., Movchan I. B., Yakovleva A. A., Goglev D. A. Technology for integrated geological and geophysical interpretation of data obtained using UAVS on the example of a site in the Murmansk region. Geology and Minerals of the West Ural : Collected Papers. Perm, 2023. No. 6(43). pp. 161–169.

Language of full-text русский
Полный текст статьи Получить
Назад