Journals →  Gornyi Zhurnal →  2024 →  #9 →  Back

APPLIED MINING AND OIL-FIELD GEOLOGY AND GEOPHYSICS
ArticleName Substantiation of optimal range of geophysical surveys to study deep structure of the Lake Vostok area
DOI 10.17580/gzh.2024.09.09
ArticleAuthor Gorelik G. D., Egorov A. S., Shuklin I. A., Ushakov D. E.
ArticleAuthorData

Empress Catherine II Saint-Petersburg Mining University, Saint-Petersburg, Russia

G. D. Gorelik, Associate Professor, Candidate of Engineering Sciences, gorelik_gd@pers.spmi.ru
A. S. Egorov, Head of Department, Professor, Doctor of Geological and Mineralogical Sciences
I. A. Shuklin, Post-Graduate Student
D. E. Ushakov, Engineer

Abstract

This article discusses the current issues and prospects of exploration of the Lake Vostok—the largest subglacial water cave in Antarctica. The study of deep structure of this area is extremely important for understanding the history of its geological evolution and of the continent generally. When the research object is hidden from direct geological investigations by a thick ice cover, geophysical methods play a key role in its study. The paper analyzes and systematizes the results of previously conducted geophysical research in the specified area and within the boundaries of Antarctica. The existing hypotheses on deep structure and genesis of graben of the Lake Vostok are discussed. The promising directions of the planned studies include: identification of the Earth crust structure features; determination of the thickness and character of occurrence of the Lake Vostok bottom sedimentary strata. The solution of these problems can enable setting location of new well drilling for the purpose of sampling water and bottom sediments. The optimal range of geophysical methods necessary for solving the set tasks includes magnetotelluric, seismic and radar surveys. For each method, the features of implementation and the problems that can arise in Antarctic conditions are presented, as well as the methods and engineering solutions are presented: for seismic measurements, it is necessary to determine the optimum charge depth; for magnetotelluric observations, it is important to develop preamplifiers for measuring equipment and to take into account natural factors which can negatively affect the result of measurements; radar sounding involves the development of an ice locator.

The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (FSRW-2024-0003).

keywords Geophysical investigations, Antarctica, Lake Vostok, magnetotelluric sounding, seismic survey, radio-echo sounding, subglacial water caves, sediments
References

1. Litvinenko V. S., Leitchenkov G. L., Vasiliev N. I. Anticipated sub-bottom geology of Lake Vostok and technological approaches considered for sampling. Geochemistry. 2020. Vol. 80, Iss. 3. ID 125556.
2. Serbin D. V., Dmitriev A. N. Experimental research on the thermal method of drilling by melting the well in ice mass with simultaneous controlled expansion of its diameter. Journal of Mining Institute. 2022. Vol. 257. pp. 833–842.
3. Popov S. V. Six decades of radar and seismic research in Antarctica. Water Resources. 2021. Vol. 61, No. 4. pp. 587–619.
4. Ridley J. K., Cudlip W., Laxon S. W. Identification of subglacial lakes using ERS-1 radar altimeter. Journal of Glaciology. 1993. Vol. 39, No. 133. pp. 625–634.
5. Litvinenko V. Foreword: Sixty-year Russian history of Antarctic sub-glacial lake exploration and Arctic natural resource development. Geochemistry. 2020. Vol. 80, Iss. 3. ID 125652.
6. Popov S. V., Masolov V. N., Lukin V. V. Lake Vo stok, East Antarctica: Glacier thickness, lake depth, subglacial and parent topography. Led i Sneg. 2011. No. 1(113). pp. 25–35.
7. Studinger M., Bell R. E., Karner G. D., Tikku A. A., Holt J. W. et al. Ice cover, landscape setting, and geological framework of Lake Vostok, East Antarctica. Earth and Planetary Science Letters. 2003. Vol. 205, Iss. 3-4. pp. 195–210.
8. Studinger M., Karner G. D., Bell R. E., Levin V., Ray mond C. A. et al. Geophysical models for the tectonic framework of the Lake Vostok region, East Antarctica. Earth and Planetary Science Letters. 2003. Vol. 216, Iss. 4. pp. 663–677.
9. Leychenkov G. L., Belyatskiy B. V., Popkov A. M., Popo v S. V. Geological nature of the subglacial Lake Vostok in East Antarctica. Materialy glyatsiologicheskikh issledovaniy. 2005. No. 98. pp. 81–91.
10. Isanina E. V., Krupnova N. A., Popov S. V., Masolov V. N., Lukin V. V. Deep structure of the Vostok Basin, East Antarctica as deduced from seismological observations. Geotectonics. 2009. Vol. 43, No. 3. pp. 221–225.
11. Leitchenkov G. L., Antonov A. V., Luneov P. I., Lipenkov V. Y. Geology and environments of subglacial Lake Vostok. Philosophical Transactions: Mathematical, Physical and Engineering Sciences (Series A). 2016. Vol. 374, No. 2059. ID 20140302
12. Nefedov Yu., Gribanov D., Gasimov E., Peskov D., Han G. et al. Development of Achimov deposits sedimentation model of one of the West Siberian oil and gas province fields. Reliability: Theory & Applications. 2023. Vol. 18, Special Issue 5(75). pp. 441–448.
13. Prischepa O. M., Kireev S. B., Nefedov Yu. V., Martynov A. V., Lutsky D. S. et al. Theoretical and methodological approaches to identifying deep accumulations of oil and gas in oil and gas basins of the Russian Federation. Frontiers in Earth Science. 2023. Vol. 11. ID 1192051
14. Wannamaker P., Hill G., Stodt J., Maris V., Ogawa Y. et al. Uplift of the central transantarctic mountains. Nature Communications. 2017. Vol. 8. DOI: 10.1038/s41467-017-01577-2
15. Xiao E., Jiang F., Guo J., Latif K., Fu L. et al. 3D Interpretation of a broadband magnetotelluric data set collected in the south of the Chinese Zhongshan Station at Prydz Bay, East Antarctica. Remote Sensing. 2022. Vol. 14 , Iss. 3. ID 496.
16. Guo J., Xiao E., Deng J., Li L., Fu L. et al. Electrical structures of the lithosphere along the Prydz Belt: Magnetotelluric study at Chinese Zhongshan Station, East Antarctica. Arabian Journal for Science and Engineering. 2 022. Vol. 47, Iss. 1. pp. 695–707.
17. Murthy D. N., Veeraswamy K., Harinarayana T., Singh U. K., Santosh M. Electrical structure beneath Schirmacher Oasis, East Antarctica: A magnetotelluric study. Polar Research. 2013. Vol. 32. ID 17309.
18. Hill G. J., Wannamaker P. E., Maris V., Stodt J. A., Kordy M. et al. Trans-crustal structural control of CO2-rich extensional magmatic systems revealed at Mount Erebus Antarctica. Nature Communications. 2022. Vol. 13. DOI: 10.1038/s41467-022-30627-7
19. Hill G. J. On the use of electromagnetics for earth imaging of the Polar regions. Surveys in Geophysics. 2020. Vol. 41, Iss. 1. pp. 5–45.
20. Zorin N. I., Yakovlev A. G. HA hybrid receiving line for measuring the electric field in a wide frequency band. Moscow University Geology Bulletin. 2021. Vol. 76, No. 6. pp. 639–645.
21. Gustafson Ch. D., Key K., Siegfried M. R., Winberry J. P., Fricker H. A. et al. A dynamic saline groundwater system mapped beneath an Antarctic ice stream. Science. 2022. Vol. 376, No. 6593. pp. 640–644.
22. Woodward J., Smith A. M., Ross N., Thoma M., Corr H. F. J. et al. Location for direct access to subglacial Lake Ellsworth: An assessment of geophysical data and modeling. Geophysical Research Letters. 2010. Vol. 37, Iss. 11. L11501. DOI: 10.1029/2010GL042884
23. Smith A. M., Woodward J., Ross N., Bentley M. J., Hodgson D. A. et al. Evidence for the long-term sedimentary environment in an Antarctic subglacial lake. Earth and Planetary Science Letters. 2018. Vol. 504. pp. 139–151.
24. Hofstede C., Eisen O., Diez A., Jansen D., Kristoffersen Y. et al. Investig ating englacial reflections with vibro- and explosive-seismic surveys at Halvfarryggen ice dome, Antarctica. Annals of Glaciology. 2013. Vol. 54, Iss. 64. pp. 189–200.
25. Fernandoy F., Meyer H., Oerter H., Wilhelms F., Graf W. et al. Temporal and spatial variation of stable-isotope ratios and accumulation rates in the hinterland of Neumayer station, East Antarctica. Journal of Glaciology. 2010. Vol. 56, No. 198. pp. 673–687.
26. Eisen O., Hofstede C., Diez A., Kristoffersen Y., Lambrecht A. et al. On-ice vibroseis and snowstreamer systems for geoscientific research. Polar Science. 2015. Vol. 9, No. 1. pp. 51–65.
27. Shishkin E. V., Bolshunov A. V., Timofeev I. P., Avdeev A. М., Rakitin I. V. Model of a walking sampler for research of the bottom surface in the subglacial lake Vostok. Journal of Mining Institute. 2022. Vol. 257. pp. 853–864.
28. Danilev S. M., Sekerina D. D., Danileva N. A. Localization of sites for the development of geomechanical processes in underground workings based on the results of the transformation and classification analysis of seismic data. Journal of Mining Institute. 2024. Vol. 266. pp. 260–271.
29. Bolshunov A. V., Vasilev D. A., Dmitriev A. N., Ignatev S. A., Kadochnikov V. G. et al. Results of complex experimental studies at Vostok station in Antarctica. Journal of Mining Institute. 2023. Vol. 263. pp. 724–741.
30. Yakovleva A. A., Movchan I. B., Medinskaia D. K., Sadykova Z. I. Quantitative interpretations of potential fields: From parametric to geostructural recalculations. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. 2023. Vol. 334, No. 11. pp. 198–215.
31. Talovina I. V., Krikun N. S., Yurchenko Yu. Yu., Ageev A. S. Remote sensing techniques in the study of structural and geotectonic features of Iturup Island (the Kuril Islands). Journal of Mining Institute. 2022. Vol. 254. pp. 158–172.

Language of full-text russian
Full content Buy
Back