Journals →  Chernye Metally →  2024 →  #9 →  Back

Machine-building technologies
ArticleName Impact vibration knurling of structural steel
DOI 10.17580/chm.2024.09.14
ArticleAuthor D. Yu. Ershov, P. V. Shishkin, D. A. Klochkov, M. E. Kokritsky
ArticleAuthorData

Empress Catherine II Saint Petersburg Mining University, St. Petersburg, Russia

D. Yu. Ershov, Cand. Eng., Associate Prof., Dept. of Meahanical Engineering, e-mail: Ershov_Dyu@pers.spmi.ru

P. V. Shishkin, Cand. Eng., Associate Prof., Dept. of Transport and Technological Processes and Machines, e-mail: shishkinp@mail.ru
D. A. Klochkov, Postgraduate Student, Dept. of Mechanical Engineering, e-mail: Klochkov_DA@pers.spmi.ru
M. E. Kokritsky, Master’s Student, Dept. of Mechanical Engineering, e-mail: s232407@stud.spmi.ru

Abstract

The work is devoted to the study of impact vibration knurling of structural steels. Vibratory knurling differs from conventional knurling in that the deforming element is additionally given a reciprocating (oscillating) motion along the axis of the workpiece. The oscillating movement of the deforming element creates a sinusoidal trace of the tool, which is superimposed on the helical line formed as a result of the kinematic connection between the workpiece and the tool. The change in the size of the workpiece when a completely new microrelief is formed depends on the parameters of the initial roughness, the size of the deforming element and the machining modes. This paper presents the results of experimental study of the dependence of surface roughness, surface hardness and geometrical dimensions on the change of parameters of shock vibration knurling. The dependence of the height of profile irregularities on the nominal depth of indentation, feed, diameter of deforming ball for different steel materials is given. The dependence of surface hardness on the nominal depth of indentation, feed, diameter of the deforming ball and the dependence of the average pitch of irregularities on the feed for the investigated grades of structural steel was obtained.

keywords Surface deformation, surface hardness, profile roughness, vibration rolling, impact, regular microrelief, roughness, hardening, structural steel.
References

1. Zhang J., Huang X., Kang X., Yi H. et al. Energy field-assisted high-speed dry milling green machining technology for difficult-to-machine metal materials. Frontiers of Mechanical Engineering. 2023. Vol. 18, Iss. 2. 28. DOI: 10.1007/s11465-022-0744-9
2. Vologzhanina S. A., Ermakov B. S., Ermakov S. В., Sleptsov O. I. Investigation of material properties for cryogenic products poduced by additive manufacturing techniques. Metallurgist. 2023. Vol. 67. pp. 644–651. DOI: 10.1007/s11015-023-01552-x
3. Zellagui R., Hemmouche L., Ait-Sadi H., Chelli A. Effect of element addition, microstructure characteristics, mechanical properties, machining and welding processes of the Hadfield austenitic manganese steel. Archives of Metallurgy and Materials. 2022. Vol. 67, Iss. 3. pp. 863–868. DOI: 10.24425/amm.2022.139676
4. Fu P., Zhan K., Jiang C. H. Micro-structure and surface layer properties of 18CrNiMo7-6 steel after multistep shot peening. Mater. Des. 2013. Vol. 51. pp. 309–314. DOI: 10.1016/j.matdes.2013.04.011
5. Yun Z., Zhenkuan S., Qilong W., Tingchao L. et al. Improving the mechanical properties of 304 stainless steel using waterjet peening. Mater. Sci. 2018. Vol. 26. pp. 161–167. DOI: 10.5755/j01.ms.26.2.21117
6. Wang Y. M., Ma E. Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mater. Sci. Eng. A. 2004. Vol. 375-377. pp. 46–52. DOI: 10.1016/j.msea.2003.10.214
7. Maksarov V. V., Maksimov D. D., Sinyukov M. S. Quality control of complex contour surfaces in aluminium alloy items during magnetic abrasive finishing. Tsvetnye Metally. 2023. No. 4. pp. 96–102.
8. Hou X. N., Qin H. F., Gao H. Y., Mankoci S. et al. A systematic study of mechanical properties, corrosion behavior and biocompatibility of AZ31B Mg alloy after ultrasonic nanocrystal surface modification. Mater. Sci. Eng. C. 2017. Vol. 78. pp. 1061–1071. DOI: 10.1016/j.msec.2017.04.128
9. Amanov A., Urmanov B., Amanov T., Pyun Y. S. Strengthening of Ti-6Al-4V alloy by high temperature ultrasonic nanocrystal surface modification technique. Mater. Lett. 2017. Vol. 196. pp. 198–201. DOI: 10.1016/j.matlet.2017.03.059
10. Shishlyannikov D. I., Zverev V. Y., Zvonareva A. G., Frolov S. A. et al. Evaluation of the energy efficiency of functioning and increase in the operating time of hydraulic drives of sucker-rod pump units in difficult operating conditions. Journal of Mining Institute. 2023. Vol. 261. pp. 349–362.
11. Ivanov S. L., Ivanova P. V., Kuvshinkin S. Y. Promising model range career excavators operating time assessment in real operating conditions. Journal of Mining Institute. 2020. Vol. 242. p. 228. DOI: 10.31897/PMI.2020.2.228
12. Serbin D. V., Dmitriev A. N. Experimental research on the thermal method of drilling by mel ting the well in ice mass with simultaneous controlled expansion of its diameter. Journal of Mining Institute. 2022. Vol. 257. pp. 833–842. DOI: 10.31897/PMI.2022.82
13. Kulchitskiy A. Optical inspection systems for axisymmetric parts with spatial 2d resolution. Symmetry. 2021. Vol. 13, Iss. 7. 1218. DOI: 10.3390/sym13071218
14. Maksarov V. V., Minin А. O., Zakharova V. P. Ensuring surface quality in almn alloy items during high-frequency wave impact boring. Tsvetnye Metally. 2023. No. 4. pp. 90–95.
15. Shakhnazarov K. Yu., Vologzhanina S. A., Khuznakhmetov R. M. Explanation of anomalies in the formation of structure and physical and mechanical properties of steels and alloys. Informatsionno-tekhnologicheskiy vestnik. 2023. No. 1. pp. 196–209.
16. Wegener T. et al. Influence of surface mechanical attrition treatment (SMAT) on microstructure, tensile and low-cycle fatigue behavior of additively manufactured stainless steel 316L. Metals. 2022. Vol. 12, Iss. 9. 1425. DOI: 10.3390/met12091425
17. Bolobov V. I., Plashchinsky V. A. Influence of impact duration on fracture efficiency in rocks and on plastic deformation of metals. MIAB. Mining Inf. Anal. Bull. 2022. Vol. 3. pp. 78–96. DOI: 10.25018/0236_1493_2022_3_0_78
18. Zhukov I. A., Martyushev N. V., Zyukin D. A., Azimov A. M. et al. modification of hydraulic hammers used in repair of metallurgical units. Metallurgist. 2023. Vol. 66, Iss. 11-12. pp. 1644–1652. DOI: 10.1007/s11015-023-01480-w
19. Vologzhanina S. A., Igolkin A. F., Peregudov A. А. Research of properties of austenitic steels. Key Engineering Materials. 2021. Vol. 887. pp. 242–246. DOI: 10.4028/www.scientific.net/KEM.887.242
20. Hotz H., Kirsch B., Aurich J. C. Impact of the thermomechanical load on subsurface phase transformations during cryogenic turning of metastable austenitic steels. Journal of Intelligent Manufacturing. 2021. Vol. 32, Iss. 1. pp. 877–894. DOI: 10.1007/s10845-020-01626-6
21. Suslova A.G. Technology and tools for finishing and hardening treatment of parts by surface plastic deformation. Moscow : Mashinostroenie, 2014. 480 p.
22. Dudkina N. G., Arisova V. N. Structure and properties of the surface layer of 40Kh steel subjected to electromechanical processing with dynamic force action. Izvestiya vuzov. Chernaya Metallurgiya. 2021. Vol. 64. No. 4. pp. 259–265. DOI: 10.17073/0368-0797-2021-4-259-265
23. Zaydes S. A. Handbook: Surface plastic deformation processes. Irkutsk : Izdatelstvo IRNITU, 2021. 504 p.
24. Klevtsov V. A., Timofeev D. Y., Khalimonenko A. D. Improved design of manufacturing processes for mining machines: basing concepts. Russian Engineering Research. 2023. Vol. 43, Iss. 11. pp. 1367–1375. DOI: 10.3103/S1068798X23110151
25. Zaydes S. A., Kuan Kh. M. Degree of hardening and depth of work hardening in pendulum surface plastic deformation of carbon steel. Izvestiya vuzov. Chernaya Metallurgiya. 2023. Vol. 66. No. 3. pp. 272–282. DOI: 10.17073/0368-0797-2023-3-272-282
26. Li Y. et al. Effects of surface severe plastic deformation on the mechanical behavior of 304 stainless steel. Metals. 2020. Vol. 10, Iss. 6. 831. DOI: 10.3390/met10060831
27. GOST R ISO 6501-1–2007. Metallic materials. Vickers hardness test. Part 1: Test method. Measurement. Introduced: 01.08.2008.
28. Patraev E. V., Vakulin M. S., Gordeev Yu. I., Yasinsky V. B. High-speed micromilling of parts made of composite materials and aluminum alloys. Izvestiya vuzov. Mashinostroenie. 2021. Vol. 12. pp. 62–72. DOI: 10.18698/0536-1044-2021-12-62-72
29. Vogler M. P., Devor R. E., Kapoor S. G. On the modeling and analysis of machining performance in micro-end milling. Journal of Manufacturing Science and Engineering. 2004. Vol. 126, Iss. 4. pp. 685–694. DOI: 10.1115/1.1813470
30. Basova T. V., Andreev Y. S, Basova M. V. The development of cutting tools active control methodology for numerical control milling machines. 2022 International Ural Conference on Electrical Power Engineering (UralCon). 2022. pp. 108–112. DOI: 10.1109/UralCon54942.2022.9906666
31. Zubarev Yu. M., Kruglov A. I., Afanasenkov M. A. Selection of modifying elements for directing the properties of functional barrier sublayers of the surface layer of tool material. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. 2015. Vol. 11 (173). pp. 18–20.
32. Altuntaş G., Altuntaş O., Bostan B. Evaluation of the effect of shallow cryogenic treatment on tribological properties and microstructure of high manganese steel. Inter Metalcast. 2024. Vol. 18. pp. 1523–1534. DOI: 10.1007/s40962-023-01131-5
33. Wang Z., Yang Y., Chen C., Li Y. et al. Effect of surface impacting parameters on wear resistance of high manganese steel. Coatings. 2023. Vol. 13. 539. DOI: 10.3390/coatings13030539
34. Sun S., Zhao A., Wu Q. Effect of strain rate on the work-hardening rate in high-Mn steel. Materials Science and Technology. 2017. Vol. 33, Iss. 11. pp. 1306–1311. DOI: 10.1080/02670836.2017.1288690
35. Shipulin L. V., Ardashev D. V. Concept of designing high-speed processing operations based on complex process simulation. Procedia Manufacturing. 2020. Vol. 46, Iss. 12. pp. 64–69. DOI: 10.1016/j.promfg.2020.03.011
36. Chen Y., Cao H. J., Yang X. Research on load distribution characteristic on the cutting edge in high-speed gear hobbling process. Journal of Mechanical Engineering. 2017. Vol. 53, Iss. 15. pp. 181–187. DOI: 10.3901/JME.2017.15.181

Language of full-text russian
Full content Buy
Back