Journals →  Chernye Metally →  2024 →  #9 →  Back

Machine-building technologies
ArticleName Improving the technology of finishing abrasive treatment in a magnetic field of the lock joint threaded surface of the structural alloy steel lock joint for drill rods
DOI 10.17580/chm.2024.09.10
ArticleAuthor V. V. Maksarov, R. A. Karenina, M. S. Sinyukov
ArticleAuthorData

Empress Catherine II St. Petersburg Mining University, St. Petersburg, Russia

V. V. Maksarov, Dr. Eng., Prof., Dean of the Faculty of Mechanical Engineering, e-mail: maks78.54@mail.ru
R. A. Karenina, Postgraduate Student, Dept. of Mechanical Engineering, e-mail: radmila8609@mail.ru
M. S. Sinyukov, Master’s Student, Dept. of Mechanical Engineering, e-mail: sms-0305@yandex.ru

Abstract

The article presents the work features of the drill rod locking connection, and the problems that arise during the formation of the thread microgeometry. A method of magnetically abrasive polishing of the locking joint outer and inner threaded surfaces is proposed. A method for determining magnetic forces in the device working space for magnetic abrasive treatment is considered. The application of the ANSYS Maxwell software environment for calculating the magnitude of magnetic induction in the interpolar space is shown. The analysis of the magnetic forces distribution in the interpolar space with various modifications of pole magnets is presented, which allows us to determine the most effective design of the magnetic tip. The results obtained allow us to determine the conditions for technological provision of a uniform surface layer of the drill rod lock joint threaded surface.
The studies were carried out with the involvement of the laboratory facilities of the Center for Collective Use of the Mining University.

keywords Magnetic abrasive polishing, magnetic tip, distribution of magnetic forces, modeling, threaded connection, roughness, fatigue strength
References

1. Kopei V., Onysko O., Odosii Z., Pituley L. et al. Investigation of the influence of tapered thread profile accuracy on the mechanical stress, fatigue safety factor and contact pressure. New Technologies, Development and Application IV. 2021. DOI: 10.1007/978-3-030-75275-0_21

2. Teplyakova A. V., Azimov A. M., Alieva L., Zhukov I. A. Improvement of manufacturability and endurance of percussion drill assemblies: Review and analysis of engineering solutions. MIAB. Mining Informational and Analytical Byulletin. 2022. Vol. 9. pp. 120–132. DOI: 10.21177/1998-4502-2022-14-3-501-511
3. Akulovich L. M., Sergeev L. E., Lebedev V. Ya. Fundamentals of magnetic-abrasive treatment of metal surfaces. Minsk: BGATU, 2012. 316 p.
4. Akulovich L. M., Sergeev L. E., Pokrovsky A. I., Senchurov E. V. Ferroabrasive powders for magnetic-abrasive treatment of metal surfaces. Minsk: BGATU, 2015. 284 p.
5. Litvinenko V. S., Dvoynikov M. V. Methodology for determining the parameters of drilling mode for directional straight sections of well using screw downhole motors. Journal of Mining Institute. 2020. Vol. 241. pp. 105–112.
6. Admakin M. A., Khalimonenko A. D., Zakharova V. P., Nguyen V. D. Machinability of cutting of low-magnetic high-manganese steels. Chernye Metally. 2023. No. 2. pp. 82–87.
7. Gabov V. V., Zadkov D. A., Nguyen V. S., Khamitov M. S. et al. On the problem of improving the working tool of mining extracting machines. Gorny informatsionno-analiticheskiy byulleten. 2022. No. 6-2. pp. 205–222. DOI: 10.25018/0236_1493_2022_62_0_205
8. Timofeev D. Yu., Khalimonenko A. D., Nacharova M. A. Preliminary local thermal impact as a surface quality assurance factor. Materials Science Forum. 2021. Vol. 1031. pp. 125–131. DOI: 10.4028/www.scientific.net/msf.1031.125
9. Babayan S. A. Patterns of wear of tapered threads. Azerbaydzhanskoe neftyanoe khozyaystvo. 1972. No. 4. pp. 44–46.
10. Baron Yu. M. Magnetic-abrasive and magnetic processing of articles and cutting tools. Leningrad: Mashinostroenie, 1986. 176 p.
11. Timofeev E. G., Teplyakova A. V., Zhukov I. A., Golikov N. S. Automated method for designing anvil blocks for impact machines based on the physical and mechanical properties of objects being destroyed. Gorny informatsionno-analiticheskiy byulleten. 2022. No. 12-2. pp. 257–269. DOI: 10.25018/0236_1493_2022_122_0_257
12. Singh K., Jain V. K., Raghuram V. Experimental investigations into forces acting during a magnetic abrasive finishing process. The International Journal of Advanced Manufacturing Technology. 2006. Vol. 30. Iss. 7-8. pp. 652–662.
13. Dvoynikov M. V., Sidorkin D. I., Yurtaev S. L., Grokhotov E. I. et al. Drilling of deep and superdeep wells for the purpose of searching and exploring new mineral deposits. Zapiski Gornogo instituta. 2022. Vol. 258. pp. 945–955. DOI: 10.31897/PMI.2022.55
14. Pesin M. V. Technological support and increase in durability of drill pipes based on modeling and control of parameters of hardening treatment of threads: thesis of inauguration of Dissertation … of Doctor of Engineering Sciences. Perm, 2018. 34 p.
15. Khomich N. S. Magnetic-abrasive processing of articles: monograph. Minsk: BGATU, 2006. 218 p.

16. Qian C., Fan Z., Tian Y., Liu Y. et al. A review on magnetic abrasive finishing. The International Journal of Advanced Manufacturing Technology. 2020. Vol. 112, Iss. 3-4. pp. 619–634. DOI: 10.1007/s00170-020-06363-x
17. Vahdati M., Rasouli S. A. Study of magnetic abrasive finishing on freeform surface. Transactions of the IMF. 2016. Vol. 94. Iss. 6. pp. 294–302. DOI: 10.1080/00202967.2016.1232822
18. Anjaneyulu K., Venkatesh G. Surface texture improvement of magnetic and non magnetic materials using magnetic abrasive finishing process. Proceedings of the Institution of Mechanical Engineers. Part C: Journal of Mechanical Engineering Science. 2021. Vol. 235. Iss. 19. pp. 4084–4096. DOI: 10.1177/0954406220970590
19. Chawla Gagandeep, Kumar Vinod, Sharma Rishi. Neural simulation of surface generated during magnetic abrasive flow machining of hybrid Al/SiC/B4C-MMCs. Journal of Bio- and Tribo-Corrosion. 2021. Vol. 7. 153. DOI: 10.1007/s40735-021-00587-4
20. Cheng Ken-Chuan, Chen Kuan-Yu, Tsui Hai-Ping, Wang A-Cheng. Characteristics of the polishing effects for the stainless tubes in magnetic finishing with gel abrasive. Processes. 2021. Vol. 9. 1561. DOI: 10.3390/pr9091561
21. Yuewu Gao, Yugang Zhao, Guixiang Zhang, Fengshi Yin et al. Modeling of material removal in magnetic abrasive finishing process with spherical magnetic abrasive powder. International Journal of Mechanical Sciences. 2020. Vol. 177. 105601. DOI: 10.1016/j.ijmecsci.2020.105601
22. Bolobov V. I., Popov G. G. Methodology for testing pipeline steels for resistance to grooving corrosion. Journal of Mining Institute. 2021. Vol. 252. Iss. 6. pp. 854–860. DOI: 10.31897/PMI.2021.6.7
23. Zou Y., Xie H., Zhang Y. Study on surface quality improvement of the plane magnetic abrasive finishing process. Int J. Adv. Manuf. Technol. 2020. Vol. 109. pp. 1825–1839. DOI: 10.1007/s00170-020-05759-z
24. Kumar M., Kumar V., Kumar A., Yadav H. N. S. et al. CFD analysis of MR fluid applied for finishing of gear in MRAFF process. Materials Today: Proceedings. 2021. Vol. 45. pp. 4677–4683. DOI: 10.1016/j.matpr.2021.01.116
25. Kumar V., Sharma R., Dhakar K., Singla Y. K. et al. Experimental evaluation of magnetic abrasive finishing process with diamond abrasive. International Journal of Materials and Product Technology. 2019. Vol. 58. Iss. 1. pp. 55–70. DOI: 10.1504/IJMPT.2019.096928
26. Kumari C., Chak S. K. Experimental studies on material removal behavior in MRAH based finishing technique. Materials and Manufacturing Processes. 2021. Vol. 36. Iss. 8. pp. 916–925. DOI: 10.1080/10426914.2021.1885699
27. Bolobov V. I., Akhmerov E. V., Rakitin I. V. Influence of the rock type on the wear patterns of the excavator bucket tooth crown. Gorny informatsionno-analiticheskiy byulleten. 2022. No. 6 (2). pp. 189–204. DOI: 10.25018/0236_1493_2022_62_0_189
28. Kumar Vinod, Sharma Rishi. Neural simulation of surface generated during magnetic abrasive flow machining of hybrid Al/SiC/ B4C-MMCs. Journal of Bio- and Tribo-Corrosion. 2021. Vol. 7. 153. DOI: 10.1007/s40735-021-00587-4
29. Jain V., Kumar P., Behera P., Jayswal S. Effect of working gap and circumferential speed on the performance of magnetic abrasive finishing process. Wear. 2001. Vol. 250. Iss. 1-12. pp. 384–390. DOI: 10.1016/S0043-1648(01)00642-1
30. Nagdeve L., Dhakar K., Kumar H. Development of novel finishing tool into magnetic abrasive finishing process of aluminum 6061. Materials and Manufacturing Processes. 2020. Vol. 35, Iss. 10. pp. 1129–1134. DOI: 10.1080/10426914.2020.1767295
31. Saxena V., Yadav P. S., Pali H. S. Effect of magnetic abrasive machining process parameters on internal surface finish. Materials Today: Proceedings. 2020. Vol. 25. Iss. 4. pp. 842–847. DOI: 10.1016/j.matpr.2019.11.051
32. Singh P., Singh L., Singh S. Preparation, microstructure evaluation and performance analysis of diamond-iron bonded magnetic abrasive powder. Powder Metallurgy Progress. 2020. Vol. 19, Iss. 2. pp. 82–89. DOI: 10.1515/pmp-2019-0008
33. Zhang Wei. An analysis of the formation mechanisms of abrasive particles and their effects on cutting efficiency. Fluid Dynamics and Materials Processing. 2022. Vol. 18. Iss. 4. pp. 1153–1167. DOI: 10.32604/fdmp.2022.019719
34. Zhu P., Zhang G., Du J., Jiang L. et al. Removal mechanism of magnetic abrasive finishing on aluminum and magnesium alloys. The International Journal of Advanced Manufacturing Technology. 2021. Vol. 114. Iss. 5–6. pp. 1717–1729. DOI: 10.1007/s00170-021-06952-4
35. Akulovich L. M., Sergeev L. E. Technology and equipment for magnetic-abrasive processing of metal surfaces of various profiles. Minsk: BGATU, 2013. 372 p.

Language of full-text russian
Full content Buy
Back