Journals →  Chernye Metally →  2024 →  #9 →  Back

Technological strength properties and workability of materials
ArticleName On the regularities of electrolytic hydrogenation of ARMCO iron
DOI 10.17580/chm.2024.09.09
ArticleAuthor G. G. Popov, V. I. Bolobov, A. O. Oparina, I. U. Latipov, E. I. Sumin
ArticleAuthorData

Empress Catherine II St. Petersburg Mining University, St. Petersburg, Russia

G. G. Popov, Cand. Eng., Researcher, Scientific Center for Resource Processing, e-mail: Popov_GG@pers.spmi.ru
V. I. Bolobov, Dr. Eng., Prof., Dept. of Mechanical Engineering, e-mail: boloboff@mail.ru

I. U. Latipov, Postgraduate Student, Dept. of Materials Science and Technology of Art Products, e-mail: latipoviu@gmail.com

 

NOVA ENERGIES Ltd., St. Petersburg, Russia
A. O. Oparina, Materials Engineer, e-mail: annatilsit@yandex.ru

 

JSC TSIFRA, St. Petersburg, Russia
E. I. Sumin, Engineer of the III category, e-mail: sumin.eugen@gmail.com

Abstract

The results of electrolytic hydrogenation of 5 zones of vertically mounted 30x20x2 mm ARMCO-iron samples, differing in different locations on the central vertical of the sample (from bottom to top through 5 mm), in 5% H2SO4 solution with the addition of a 1.5 g/l CS(NH2)2 promoter at a cathode current density of 10; 17.5 and 25 mA/cm2 and the time of hydrogenation t is up to 35 minutes. It was found that, regardless of the measurement zone and current density, the change in the hardness of HV samples over time has the same form: an increase within 7.5 – 10 minutes from the initial (HV0 ~ 1,475 MPa) to the maximum value (HVmax up to 2,090 MPa), and then a decrease, with a significant difference between the values of ΔHVmaх = HVmax - HV0 for the lowest zone 1 (ΔHVmax = 615 MPa) and the highest 5 (ΔHVmax = 372 MPa). Zone 1 of the sample surface corresponds to the maximum number of “bubbles” (“blisters”), on some of which dark lines – cracks are recorded. The type of the established dependence ΔHV = f(t) is caused by the combined effect of two factors: distortion of the crystal lattice due to the introduction of hydrogen atoms into it and its compression by the pressure of molecular hydrogen located in micro-voids. Micro-voids are located in the surface layer of metal, When the pressure of hydrogen reaches a critical value in the “blisters”, they crack with the release of hydrogen into the atmosphere. This process is accompanied by a decrease in the compressive forces exerted by the blisters on the crystal lattice, with a decrease in its deformation and, as a consequence, the recorded hardness. The value of the maximum increment of hardness ΔHVmax in each zone of the sample depends on the number of “blisters” formed in this zone, and for this reason, decreases as the measurement zone rises upwards. A slight difference in the values of ΔHVmax of the samples after the completion of hydrogenation and after 30 days of exposure to air, sufficient for desorption of dissolved hydrogen from the metal, indicates that molecular hydrogen makes the main contribution to the distortion of the crystal lattice and the increase in the hardness of ARMCO-iron during hydrogenation.

The studies were carried out with the involvement of the laboratory facilities of the Center for Collective Use of the Mining University.

keywords ARMCO-iron, electrolytic hydrogenation, microhardness, blisters, molecular hydrogen, high pressure
References

1. Litvinenko V. S. et al. Barriers to the implementation of hydrogen initiatives in the context of sustainable development of global energy. Zapiski Gornogo instituta. 2020. Vol. 244. pp. 428–438. DOI: 10.31897/pmi.2020.4.5
2. Forecast for the development of energy in the world and Russia 2019. Edited by А. А. Makarov, Т. А. Mitrovoy, V. А. Kulagin. Moscow: The Energy Research Institute of the RAS – Moscow school of Management Skolkovo, 2019. 210 p.
3. IEA: World Energy Balances 2020: Overview – July 2020. Available at: World_Energy_Balances_Overview_2020_edition.pdf (accessed: 20.04.2023).
4. Rudko V. A., Gabdulkhakov R. R., Pyagay I. N. Scientific and technical substantiation of the possibility of organizing the production of needle coke in Russia. Zapiski Gornogo instituta. 2023. Vol. 263. pp. 795–809.
5. Shammazov I. A., Batyrov A. M., Sidorkin D. I., Van Nguyen T. Study of the effect of cutting frozen soils on the supports of above-ground trunk pipelines. Appl. Sci. 2023. Vol. 13. 3139. DOI: 10.3390/app13053139
6. Fetisov V., Davardoost H., Mogylevets V. Technological aspects of methane–hydrogen mixture transportation through operating gas pipelines considering industrial and fire safety. Fire. 2023. Vol. 6. 409. DOI: 10.3390/fire6100409
7. Shammazov I., Dzhemilev E., Sidorkin D. Improving the method of replacing the defective sections of main oil and gas pipelines using laser scanning data. Appl. Sci. 2023. Vol. 13. 48. DOI: 10.3390/app13010048
8. Beloglazov I. I., Morenov V. A., Leusheva E. L., Gudmestad O. T. Modeling of heavy-oil flow with regard to their rheological properties. Energies. 2021. Vol. 14. Iss. 2. 359. DOI: 10.3390/en14020359
9. Ivanova I. V., Shaber V. M. Modern method for gas production. Journal of Mining Institute. 2016. Vol. 219. pp. 403-411. DOI: 10.18454/pmi.2016.3.403
10. Bolobov V. I., Popov G. G. Testing methods for pipeline steels for resistance to rill corrosion. Zapiski Gornogo instituta. 2021. Vol. 252. pp. 854–860. DOI: 10.31897/PMI.2021.6.7
11. Kantyukov R. R., Zapevalov D. N., Vagapov R. K. Analysis of the use and impact of carbon dioxide environments on the corrosion state of oil and gas facilities. Zapiski Gornogo instituta. 2021. Vol. 250. pp. 578–586. DOI: 10.31897/PMI.2021.4.11
12. Shishlyannikov D., Zverev V., Ivanchenko A., Zvonarev I. Increasing the time between failures of electric submersible pumps for oil production with high content of mechanical impurities. Applied Sciences. 2022. Vol. 12. Iss. 1. 64. DOI: 10.3390/app12010064
13. Silvestrov S. A., Gumerov A. K. Incubation period of development of stress corrosion cracking on main pipelines. Stroitelstvo i ekspluatatsiya neftegazoprovodov, baz i khranilishch. 2018. Vol. 3. No. 113. pp. 95–113. DOI: 10.17122/ntj-oil-2018-3-95-113
14. Wasim M., Djukic M. B. External corrosion of oil and gas pipelines: A review of failure mechanisms and predictive preventions. Journal of Natural Gas Science and Engineering. 2022. Vol. 100. 104467. DOI: 10.1016/j.jngse.2022.104467
15. Martínez E. R., Tesfamariam S. Multiphysics modeling of environment assisted cracking of buried pipelines in contact with solutions of near-neutral pH. International Journal of Pressure Vessels and Piping. 2022. Vol. 196. 104607. DOI: 10.1016/j.ijpvp.2021.104607
16. Song L. et al. Characteristics of hydrogen embrittlement in high-pH stress corrosion cracking of X100 pipeline steel in carbonate/bicarbonate solution. Construction and Building Materials. 2020. Vol. 263. 120124. DOI: 10.1016/j.conbuildmat.2020.120124
17. Tian H. et al. Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater. Corrosion Science. 2018. Vol. 144. pp. 145–162. DOI: 10.1016/j.corsci.2018.08.048
18. Gumerov A. K., Khasanova A. R. Stress corrosion cracking in pipelines. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 952. 012046. DOI: 10.1088/1757-899X/952/1/012046
19. Vasiliev G. G., Dzhalyabov A. A., Leonovich I. A. Analysis of causes of deformations of gas complex facilities engineering structures in the permafrost zone. Zapiski Gornogo instituta. 2021. Vol. 249. pp. 377–385. 10.31897/PMI.2021.3.6
20. Pryakhin E. I., Mikhailov A. V., Sivenkov A. V. Technological features of surface alloying of metal products with Cr-Ni complexes in the medium of low-melting metal melts. Chernye Metally. 2023. No. 2. pp. 58–65.
21. Truschner M., Trautmann A., Mori G. K. The basics of hydrogen uptake in iron and steel. Berg-und hüttenmännische Monatshefte: BHM. 2021. Vol. 166, Iss. 9. pp. 443–449. DOI: 10.1007/s00501-021-01142-x
22. Siegl W. Hydrogen trapping in heat treated and deformed Armco iron. NACE Corrosion 2019. 2019. 13083.
23. Liu M. A. et al. Microstructural influence on hydrogen permeation and trapping in steels. Materials & Design. 2019. Vol. 167. 107605. DOI: 10.1016/j.matdes.2019.107605
24. Nagumo M. et al. Fundamentals of hydrogen embrittlement. Singapore: Springer, 2016. 921 p.
25. Merson E. D. et al. Effect of current density of electrolytic hydrogenation on the concentration of diffusion-mobile hydrogen in low-carbon steel. Vektor nauki Tolyattinskogo gosudarstvennogo universiteta. 2015. Vol. 34. No. 4. pp. 76–82.
26. Newman J. F., Shreier L. L. Role of hydrides in hydrogen entry into steel from solutions containing promoters. Corrosion Science. 1969. Vol. 9. Iss. 8. pp. 631–641. DOI: 10.1016/S0010-938X(69)80117-4
27. Latipov I. U. Analysis of existing methods of hydrogenation and testing of steel samples for the effect of hydrogen. Gazovaya promyshlennost. 2022. No. 8. pp. 36–43.
28. Zhou C., Ye B., Song Y., Cui T. et al. Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel. Int. J. Hydrogen Energy. 2019. Vol. 44, Iss. 40. pp. 22547–22558. DOI: 10.1016/j.ijhydene.2019.04.239
29. Depover T., Vercruysse F., Elmahdy A., Verleysen P. et al. Evaluation of the hydrogen embrittlement susceptibility in DP steel under static and dynamic tensile conditions. International Journal of Impact Engineering. 2019. Vol. 123. pp. 118–125. DOI: 10.1016/j.ijimpeng.2018.10.002
30. Wasim M., Djukic M. B. Hydrogen embrittlement of low carbon structural steel at macro-, micro-and nanolevels. International Journal of Hydrogen Energy. 2020. Vol. 45. Iss. 3. pp. 2145–2156. DOI: 10.1016/j.ijhydene.2019.11.070
31. Singh V. Hydrogen induced blister cracking and mechanical failure in X65 pipeline steels. International Journal of Hydrogen Energy. 2019. Vol. 44. Iss. 39. pp. 22039–22049. DOI: 10.1016/j.ijhydene.2019.06.098
32. Merson E. D., Poluyanov V. A. Stages of fish-eye crack growth under uniaxial tension of lowcarbon steel saturated with hydrogen. Transactions of the XVI International scientific and technical Ural school-seminar of metallurgists-young scientists. Yekaterinburg, 2015. pp. 343–346.
33. Kuznetsov V. V., Konstantinova N. I., Frolov V. A. The influence of electrolytic hydrogen on the microhardness of some metals. Fizika metallov i metallovedenie. 1961. Vol. 12. No. 2. pp. 255–259.
34. Zamotorin M. I., Kosovtseva T. S. Hydrogen in low-carbon and alloy steel. Metallurgiya. 1957. pp. 77–94.
35. Karpenko G. V., Litvin A. K. Effect of hydrogen on the change in microhardness of structural components of low-carbon steel. Vliyanie rabochikh sred na svoystva stali. 1961. Iss. 1. pp. 73–79.
36. Baymakov Yu. V., Kvint G. I. Hydrogen transfer into steel and iron during electrolytic treatment and etching. Trudy Leningradskogo politekhnicheskogo instituta. 1953. No. 6. pp. 72–83.
37. Beloglazov S. M. Hydrogenation of steel in electrochemical processes. Leningrad: Izdatelstvo Leningradskogo universiteta, 1975. 411 p.
38. Raczynski W. Przenikanie wodoru przez blachy zelazne w temperaturach zblizonych do pokojowej. Arch. Hutnictwa, 1958. Vol. 3. pp. 19–78.
39. Li X. et al. Effect of hydrogen charging time on hydrogen blister and hydrogen-induced cracking of pure iron. Corrosion Science. 2021. Vol. 181. 109200. DOI: 10.1016/j.corsci.2020.109200
40. Moroz L. S., Chechulin B. B. Hydrogen embrittlement of metals. Moscow: Metallurgiya, 1967. 256 p.
41. Besnard S. Influence de la haute pukete’du fer sur son aptitude au chargement en protons. Annales de chimie. 1961. Vol. 6. No. 3. pp. 245–283.
42. Efron L. I. Metal science in “Big” Metallurgy. Pipe Steels. Moscow: Metallurgizdat, 2012. 696 p.

Language of full-text russian
Full content Buy
Back