ArticleName |
Analysis of the efficiency of reducing hydrogen losses in a pipeline made of various austenitic
stainless steels |
Abstract |
In order to reduce emissions of carbon dioxide into the atmosphere, which is formed as a result of production petroleum products use, it is proposed to use hydrogen as an environmentally friendly energy resource. At the same time, hydrogen has a high permeability through materials, which leads to its inevitable diffusion losses through the pipeline wall during hydrogen transportation and storage. Based on the literature data and mathematical transformations, a computational model was proposed to estimate hydrogen leakage during transportation by a pipeline at a pressure up to 1.2 MPa and at a temperature from 300 to 600 K. Using tabular literature data on permeability coefficients based on the calculation model, possible losses of hydrogen during its transportation through a pipeline made of different grades of austenitic corrosion-resistant steels (304, 304L, 310, 316, 316L, 316LN, 321, 21-6-9, 21-9-9) at temperatures from 300 to 600 K were determined. Based on the results of calculations, it was concluded that 304L steel is the most effective material for reducing hydrogen permeability (maximum losses ~69 l/year at a temperature of 600 K). At the same time, the largest losses of hydrogen are observed in a pipeline made of steel 310 (903 l/year at a temperature of 600 K). In other steels, the volume of losses varies in the range of ~200-300 l/year. The analysis of the steel compositions showed that a decrease in the concentration of carbon, nitrogen, sulfur and phosphorus leads to an increase in its resistance to hydrogen penetration. |
References |
1. Zhdaneev O. V. Ensuring technological sovereignty of the fuel and energy complex industries of the Russian Federation. Zapiski Gornogo instituta. 2022. Vol. 258. pp. 1061–1070. DOI: 10.31897/PMI.2022.107 2. Shammazov I. A., Borisov A. V., Nikitina V. S. Modeling the operation of gravity sections of an oil pipeline. Bezopasnost truda v pormyshlennosti. 2024. No. 1. pp. 74–80. DOI: 10.24000/0409-2961-2024-1-74-80 3. Bakhtizin R. N., Zaripov R. M., Korobkov G. E., Masalimov R. B. Evaluation of the influence of internal pressure causing additional bending of the pipeline. Zapiski Gornogo instituta. 2020. Vol. 242. pp. 160. DOI: 10.31897/pmi.2020.2.160 4. Fetisov V., Gonopolsky A. M., Davardoost H. et al. Regulation and impact of VOC and CO2 emissions on low-carbon energy systems resilient to climate change: A case study on an environmental issue in the oil and gas industry. Energy Science & Engineering. 2023. Vol. 11, Iss. 4. pp. 1516–1535. DOI: 10.1002/ese3.1383 5. Korshak A. A., Korshak A. A., Pshenin V. V. Calculation of phase transitions in condensation units for recovery of oil and oil products vapors (Russian). Oil Industry Journal. 2021. Vol. 2021, Iss. 06. pp. 98–101. DOI: 10.24887/0028-2448-2021-6-98-101 6. Pshenin V. V., Zakirova G. S. Improving the efficiency of oil vapor recovery systems during commodity-transport operations at oil terminals. Zapiski Gornogo instituta. 2023. Vol. 265. pp. 121–128. DOI: 10.31897/PMI.2023.29 7. Zagashvili Y., Kuzmin A., Buslaev G. et al. Small-scaled production of blue hydrogen with reduced carbon footprint. Energies. 2021. Vol. 14. Iss. 16. pp. 5194. DOI: 10.3390/en14165194 8. Kopteva A., Kalimullin L., Tcvetkov P., Soares A. Prospects and obstacles for green hydrogen production in Russia. Energies. 2021. Vol. 14, Iss. 3. 718. DOI: 10.3390/en14030718 9. Litvinenko V. S., Tsvetkov P. S., Dvoinikov M. V., Buslaev G. V. Barriers to the implementation of hydrogen initiatives in the context of sustainable development of global energy. Zapiski Gornogo instituta. 2020. Vol. 244. pp. 428–438. DOI: 10.31897/pmi.2020.4.5 10. Bazhenov S., Dobrovolsky Y., Maximov A., Zhdaneev O. V. Key challenges for the development of the hydrogen industry in the Russian Federation. Sustainable Energy Technologies and Assessments. 2022. Vol. 54. 102867. DOI: 10.1016/j.seta.2022.102867 11. Nastich S. Y., Lopatkin V. A. Effect of hydrogen gas on mechanical properties of pipe metal of main gas pipelines. Metallurgist. 2022. Vol. 66, Iss. 5-6. pp. 625–638. DOI: 10.1007/s11015-022-01369-0 12. Zhou C. et al. Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel. International Journal of Hydrogen Energy. 2019. Vol. 44, Iss. 40. pp. 22547–22558. DOI: 10.1016/j.ijhydene.2019.04.239 13. Alekseeva O. K., Kozlov S. I., Fateev V. N. Hydrogen transportation. Transport na alternativnom toplive. 2011. No. 3 (21). pp. 18–24. 14. Klopčič N., Stöhr T., Grimmer I., Sartory M. et al. Refurbishment of natural gas pipelines towards 100 % hydrogen — a thermodynamic-based analysis. Energies. 2022. Vol. 15, Iss. 24. 9370. DOI: 10.3390/en15249370 15. Lu H. T., Li W., Miandoab E. S., Kanehashi S. et al. The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: A review. Frontiers of Chemical Science and Engineering. 2021. Vol. 15. Iss. 3. pp. 464–482. DOI: 10.1007/s11705-020-1983-0 16. Pryakhin E. I., Pribytkova D. A. The influence of the quality of surface preparation of pipes for heating networks on their corrosion resistance during operation in underground conditions. Chernye Metally. 2023. No. 11. pp. 97–102. 17. Pryakhin E. I., Azarov V. A. Increasing the adhesion of fluoroplastic coatings to steel surfaces of pipes with a view to their use in gas transmission systems. Chernye Metally. 2024. No. 3. рр. 69–75. 18. Nemanič V. Hydrogen permeation barriers: Basic requirements, materials selection, deposition methods, and quality evaluation. Nuclear Materials and Energy. 2019. Vol. 19. pp. 451–457. DOI: 10.1016/j.nme.2019.04.001 19. Lei Y., Hosseini E., Liu L., Scholes C. A. et al. Internal polymeric coating materials for preventing pipeline hydrogen embrittlement and a theoretical model of hydrogen diffusion through coated steel. International Journal of Hydrogen Energy. 2022. Vol. 47, Iss. 73. pp. 31409–31419. DOI: 10.1016/j.ijhydene.2022.07.034 20. Weihrauch M., Patel M., Patterson E. A. Measurements and predictions of diffusible hydrogen escape and absorption in catholically charged 316LN austenitic stainless steel. Scientific Reports. 2023. Vol. 13, Iss. 1. 10545. DOI: 10.1038/s41598-023-37371-y 21. Yang W. W. et al. Review on developments of catalytic system for methanol steam reforming from the perspective of energy-mass conversion. Fuel. 2023. Vol. 345. 128234. DOI: 10.1016/j.fuel.2023.128234 22. Zagashvili Yu. V., Kuzmin A. M. Small-scale hydrogen production plant. Patent RF, No. 184920. Applied: 29.06.2018. Published: 14.11.2018. 23. Xiukui S., Jian X., Yiyi L. Hydrogen permeation behaviour in austenitic stainless steels. Materials Science and Engineering: A. 1989. Vol. 114. pp. 179–187. DOI: 10.1016/0921-5093(89)90857-5 24. Gorman J. K., Nardella W. R. Hydrogen permeation through metals. Vacuum. 1962. Vol. 12, Iss. 1. pp. 19–24. DOI: 10.1016/0042-207X(62)90821-7 25. Quick N. R., Johnson H. H. Permeation and diffusion of hydrogen and deuterium in 310 stainless steel, 472 K to 779 K. Metallurgical Transactions A. 1979. Vol. 10. pp. 67–70. DOI: 10.1007/BF02686408 26. Hashimoto E., Kino T. Hydrogen permeation through type 316 stainless steels and ferritic steel for a fusion reactor. Journal of nuclear materials. 1985. Vol. 133. pp. 289–291. DOI: 10.1016/0022-3115(85)90153-9 27. Forcey K. S. et al. Hydrogen transport and solubility in 316L and 1.4914 steels for fusion reactor applications. Journal of Nuclear Materials. 1988. Vol. 160. Iss. 2-3. pp. 117–124. DOI: 10.1016/0022-3115%2888%2990038-4 28. Nagumo M. Fundamentals of hydrogen embrittlement. Singapore: Springer, 2016. 921 p. 29. Ngameni R., Millet P. Derivation of the diffusion impedance of multi-layer cylinders. Application to the electrochemical permeation of hydrogen through Pd and PdAg hollow cylinders. Electrochimica Acta. 2014. Vol. 131. pp. 52–59. DOI: 10.1016/j.electacta.2014.01.076 30. Pisarev A. A., Tsvetkov I. V., Marenkov E. D., Yarko S. S. Hydrogen permeability through metals. Proceedings of the Fifth International Conference and the Ninth International School of Young Scientists and Specialists named after A. A. Kurdyumov. 2014. Vol. 1. pp. 155–176. 31. Li Y., Barzagli F., Liu P. et al. Mechanism and evaluation of hydrogen permeation barriers: a critical review. Industrial & Engineering Chemistry Research. 2023. Vol. 62. Iss. 39. pp. 15752–15773. DOI: 10.1021/acs.iecr.3c02259 32. Engels J., Houben A., Linsmeier C. Hydrogen isotope permeation through yttria coatings on Eurofer in the diffusion limited regime. International Journal of Hydrogen Energy. 2021. Vol. 46, Iss. 24. pp. 13142–13149. DOI: 10.1016/j.ijhydene.2021.01.072 33. Zafra A. et al. Hydrogen-assisted fatigue crack growth: pre-charging vs in-situ testing in gaseous environments. Materials Science and Engineering: A. 2023. Vol. 871. 144885. DOI: 10.31224/2994 34. San Marchi C., Somerday B. P., Robinson S. L. Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures. International Journal of Hydrogen Energy. 2007. Vol. 32. No. 1. pp. 100–116. DOI: 10.1016/j.ijhydene.2006.05.008 35. Wetegrove M., Jazmin Duarte M., Taube K., et al. Preventing hydrogen embrittlement: the role of barrier coatings for the hydrogen economy. Hydrogen. 2023. Vol. 4, Iss. 2. pp. 307-322. DOI: 10.3390/hydrogen4020022 36. Tian X., Pei J. Study progress on the pipeline transportation safety of hydrogen-blended natural gas. Heliyon. 2023. Vol. 9, Iss. 11. e21454. DOI: 10.1016/j.heliyon.2023.e21454 37. Bolobov V. I. et al. Estimation of the influence of compressed hydrogen on the mechanical properties of pipeline steels. Energies. 2021. Vol. 14, Iss. 19. 6085. DOI: 10.3390/en14196085 38. Ganzulenko O. Yu., Kirillov N. B., Petkova A. P., Yakovitskaya M. V. Hydrogen permeability and performance of austenitic steels and alloys in hydrogen-containing environments. Materialovedenie. Energetika. 2011. No. 2 (123). pp. 218–224. |