Journals →  Chernye Metally →  2024 →  #9 →  Back

Metallurgy
ArticleName Modeling of cooling mode during hardening of a large-sized rotor blank made of Cr – Ni – Mo – V steel
DOI 10.17580/chm.2024.09.05
ArticleAuthor D. V. Tsukanov, D. L. Smirnova, A. P. Petkova, V. V. Shtertser.
ArticleAuthorData

NRC “Kurchatov Institute” – “Prometey” Central Scientific Research Institute of Structural Materials, St. Petersburg, Russia

D. V. Tsukanov, 1st Category Engineer, e-mail: tsumami@mail.ru
D. L. Smirnova, Leading Engineer, e-mail: tsumami@mail.ru

 

Empress Catherine II Saint Petersburg Mining University, St. Petersburg, Russia
A. P. Petkova, Dr. Eng., Prof., Dept. of Materials Science and Technology of Art Products, e-mail: apetkova@inbox.ru
V. V. Shtertser, Postgraduate Student, Dept. of Materials Science and Technology of Art Products, e-mail: st.valeriaa@yandex.ru

Abstract

Processes associated with phase transformations during hardening of large-sized forgings made of alloy steels are considered. The basic transformation processes and their possible influence together with cooling modes on the characteristics of the properties are analyzed. The first part of the article studies the issues of phase transformations in the area of pearlite and bainitic transformations determined by standard thermokinetic diagrams and simulated modes. The calculated values of cooling rates for a forging with a maximum cross-section of 1000 mm in three zones (surface, center and ½ radius of the blank) during quenching in oil are presented, the microstructure and kinetics of pearlite and bainitic transformations are determined. The results of dilatometric studies in three different temperature zones along the cross-section of the heattreated blank during cooling at the corresponding calculated rates are presented. The second part of the article analyzes the cooling curves, microstructure and hardness of the samples after quenching in oil, as well as the temperatures of the beginning and end of the austenite transformation in three zones of the blank. Conclusions are made on the importance of taking into account the width of the range of critical points for assessing the nature of the austenite transformation in the area of the pearlite transformation. It is shown that the cooling rates during quenching are not constant over the entire temperature range, which must be taken into account when constructing thermokinetic diagrams of austenite transformation during continuous cooling. The nature of the austenite transformation during modeling of the cooling mode is most indicative and corresponds to real cooling modes during quenching.

keywords Zhase transformation, dilatometric curve, quenching, tempering, austenite, marten site, bainite, pearlite, ferrite, hardenability
References

1. Tsukanov V. V., Smirnova D. L., Efimov S. V. Choosing accumulation and preliminary heat treatment modes for making forged ingots of medium-carbon medium-alloy steels. Inorganic Materials: Applied Research. 2022. Vol. 13, Iss. 6. pp. 1534–1545.
2. Tsukanov V. V., Filimonov G. N., Grekova I. I., Teplukhina I. V., Dyukov V. V. et al. Possibilities of optimization of heat treatment mode for reactor steel. Voprosy materialovedeniya. 2004. No. 4 (40). pp. 14–23.
3. Tsukanov V. V., Durynin V. A. Improvement of preliminary heat treatment modes for forgings made of heat-resistant steels of Cr-4Ni-Mo-V and Cr-Mo-V compositions and recommendations for final heat treatment. Voprosy materialovedeniya. 2009. No. 3 (59). pp. 85–95.
4. Tsukanov V. V., Lebedeva N. V., Markova Yu. M. Conditions for diffusion transformation of austenite in steel Cr–3Ni–Mo–V-composition with high stability of austenite. Zapiski Gornogo instituta. 2018. Vol. 230. pp. 153–159. DOI: 10.25515/PMI.2018.2.153
5. Tsukanov V. V., Efimov S. V., Titova T. I. et al. Features of the production of large-sized forgings from highly heat-resistant steel of 3Cr-Mo-W-V composition and assessment of its structure and properties. Tyazheloe mashinostroenie. 2020. No. 1-2. pp. 2–6.
6. Milyuts V. G., Tsukanov V. V., Pryakhin E. I., Nikitina L. B. Development of technology for production of high-strength hull steel, ensuring a reduction in the production cycle and high quality of sheets. Zapiski Gornogo instituta. 2019. Vol. 239. pp. 536–543. DOI: 10.31897/PMI.2019.5.536
7. Vologzhanina S. A., Igolkin A. F., Peregudov A. A., Baranov I. V. et al. Effect of the deformation degree under low temperature conditions on the transformations and properties of metastable austenitic steels. Obrabotka metallov (tekhnologiya – oborudovanie – instrumenty). 2022. Vol. 24. No. 1. pp. 73–86.
8. Bazhin V. Yu., Issa B. Effect of heat treatment on the microstructure of steel coils of a heating tube furnace. Zapiski Gornogo instituta. 2021. Vol. 249. pp. 393–400. DOI: 10.31897/PMI.2021.3.8
9. Shakhnazarov K. Y., Pryakhin E. I., Mikhailov A. V. 630 °C ± 30 °C - nodal (critical) temperature of iron and carbon steel. Materials Science Forum. 2021. Vol. 1040. pp. 191–199. DOI: 10.4028/www.scientific.net/MSF.1040
10. Tsukanov V. V., Gromova N. B., Fomin S. E., Efimova O. V. Acceleration of the A→P transformation in deep-hardening steels. Proceedings of the XVI International scientific and technical conference “Problems of resource and safe operation of materials and structures” March 1–2, St. Petersburg. 2011. pp. 150–154.
11. Pustovoyt V. N., Dolgachev Yu. V., Karavaev V. P. Decomposition of residual austenite in U12 steel during processing in a magnetic field. Tendentsii razvitiya nauki i obrazovaniya. 2021. Vol. 70-2. pp. 71–73. DOI: 10.18411/lj-02-2021-57
12. Zhao W., Feng G., Ren H., Zhang M. et al. Temperature-dependent characteristics of DH36 steel fatigue crack propagation. Fatigue & Fracture of Engineering Materials & Structures. 2020. Vol. 43. Iss. 3. pp. 617–627.
13. Pryakhin E. I., Ligachev A. E., Kolobov Y. R., Zakharenko E. A. et al. Assessment of the thermal effect on the surface of metal structural materials on the stability of laser-induced codes readability. Materials Science Forum. 2021. Vol. 1040. pp. 47–54.
14. Okishev K. Yu. Calculation of diagrams of isothermal decomposition of austenite in structural steels. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie. 2020. Vol. 22. No. 2. pp. 82–89. DOI: 10.15593/2224-9877/2020.2.10
15. Bolobov V. I., Popov G. G. Methodology for testing pipeline steels for resistance to rill corrosion. Zapiski Gornogo instituta. 2021. Vol. 252. pp. 854–860. DOI: 10.31897/PMI.2021.6.7
16. Popov A. A., Popova A. E. Isothermal and thermokinetic diagrams of decomposition of undercooled austenite. Moscow : MAShGIZ. 1961. 234 p.
17. Bazhin V. Yu. Modern view on anomalies in metal groups of the D. I. Mendeleyev`s Periodic Table. Zapiski Gornogo instituta. 2020. Vol. 239. pp. 520–527.
18. Gulenko A. G., Tsukanov V. V. Calculation assessment of the stress level in large-sized blanks of power engineering parts during cooling after tempering. Tyazheloe mashinostroenie. 2012. No. 8. pp. 21–27.
19. Vologzhanina S. A., Teplukhina I. V., Batasov A. V., Ovanesyan K. K. et al. Features of austenite decomposition and patterns of structure formation in low-alloy steel of 09G2SA-A grade during continuous cooling. Globalnaya energiya. 2023. Vol. 29. No. 1. pp. 170–180.
20. Shakhnazarov K. Yu., Vologzhanina S. A., Khuznakhmetov R. M. Explanation of anomalies in the formation of structure and physical and mechanical properties of steels and alloys. Informatsionno-tekhnologicheskiy vestnik. 2023. No. 1 (35). pp. 196–209.
21. Lorenzon A., Antonello M., Berto F. Critical review of turbulence models for cfd for fatigue analysis in large steelstructures. Fatigue & Fracture of Engineering Materials & Structures. 2018. Vol. 41, Iss. 4. pp. 762–775.
22. Leontiev L. I., Tsukanov V. V., Smirnova D. L. The role of D. K. Chernov in the creation and development of the doctrine of modern metallurgy and metal science. Part 2. Scientific and practical confirmation of the D. K. Chernov`s ideas. Izvestiya vuzov. Chernaya Metallurgiya. 2020. Vol. 63 (11-12). pp. 873–877. DOI: 10.17073/0368-0797-2020-11-12-873-877
23. Sadovsky V. D. Structural heredity in steel. Moscow : Metallurgiya, 1973. 208 p.
24. Spencer R. P., Patterson E. A. Observations of fatigue crack behaviour in proton-irradiated 304 stainless steel. Fatigue & Fracture of Engineering Materials & Structures. 2019. Vol. 42, Iss. 9. pp. 2120–2132.
25. Lu Y.-C., Chen T., Yang F.-P., Lan T. The retardation effect of static torsion on fatigue crack growth in stripsteel. Fatigue & Fracture of Engineering Materials & Structures. 2020. Vol. 43, Iss. 8. pp. 1800–1813.
26. Davydov S. V. Carbide transformation of peritectoid type in Fe-C alloys. Metallurgiya mashinostroeniya. 2020. No. 4. pp. 17–26.
27. Shakhnazarov K. Y., Pryakhin E. I., Troshina E. Y. Rationale for signs of transformation in iron near 200 °C. Letters on Materials. 2022. Vol. 12, Iss. 4. pp. 298–302.
28. Davydov S. V. Peritectoid carbide transformation based on ε-carbide Fe2C in Fe-C-system alloys. Part 1. Basics of theory. Chernye Metally. 2020. No. 11. pp. 15–21.
29. Balandin S. Yu., Durynin V. A., Titova T. I., Tsukanov V. V. Improvement of preliminary heat treatment of large forgings made of steel of C-Mo-V and Cr-Ni-Mo-V composition. Proceedings of the XIII International scientific and technical conference of St. Petersburg State University of Refrigeration and Food Processing Technologies. St. Petersburg, 2007. pp. 212–218.
30. Leontiev L. I., Tsukanov V. V., Smirnova D. L. The role of D. K. Chernov in the creation and development of the doctrine of modern metallurgy and metal science. Part 1. The main theoretical and industrial discoveries of D. K. Chernov. Izvestiya vuzov. Chernaya Metallurgiya. 2020. Vol. 63 (10). pp. 796–801. DOI: 10.17073/0368-0797-2020-10-796-801
31. Tsukanov V. V. Modern steels and technologies in power engineering. Saint Petersburg : ANO LA “Professional“, 2014. 464 p.
32. Tsukanov V. V., Smirnova D. L., Efimov S. V., Titova T. I. et al. Computer modeling of the modes of the main heat treatment of a forged blank made of 20Kh3MVFA grade steel. Tyazheloe mashinostroenie. 2020. No. 9. pp. 2–9.
33. Alekseev V. I., Barakhtin B. K., Zhukov A. S. Chemical heterogeneity as a factor in increasing the strength of steels manufactured using selective laser melting technology. Zapiski Gornogo instituta. 2020. Vol. 242. p. 191. DOI: 10.31897/PMI.2020.2.191
34. Pryakhin E. I., Sharapova D. M. Understanding the structure and properties of the heat affected zone in welds and model specimens of high-strength low-alloy steels after simulated heat cycles. CIS Iron and Steel Review. 2020. Vol. 19. pp. 60–65.
35. Youn G.-G., Kim J.-S., Kim Y.-J., Kamaya М. Numerical prediction of notch bluntness effect on fracture resistance of sm490 acarbon steel. Fatigue & Fracture of Engineering Materials & Structures. 2020. Vol. 43, Iss. 4. pp. 660–671.
36. Davydov S. V., Filippov R. A., Moroz A. A. Low-temperature decomposition of pearlite in ironcarbon alloys by the reaction of peritectoid transformation. Naukoemkie tekhnologii v mashinostroenii. 2021. No. 2 (116). pp. 3–13. DOI: 10.30987/2223-4608-2021-2-3-13
37. Bogdanov V. I., Teplukhina I. V., Tsvetkov A. S., Titova T. I. et al. Features of austenite grain growth in forging metal from a large ingot of structural steel. Pisma o materialakh. 2019. Vol. 9. No. 3. pp. 304–309. DOI: 10.22226/2410-3535-2019-3-304-309

Language of full-text russian
Full content Buy
Back