Journals →  Черные металлы →  2024 →  #9 →  Back

Машиностроительные технологии
ArticleName Повышение качества обработки изделий из низколегированных ферритно-перлитных сталей посредством концентрированного лазерного излучения
DOI 10.17580/chm.2024.09.12
ArticleAuthor А. Е. Ефимов, В. Д. Успенская, А. А. Мотрич
ArticleAuthorData

Санкт-Петербургский горный университет императрицы Екатерины II, Санкт-Петербург, Россия

А. Е. Ефимов, доцент кафедры машиностроения, канд. техн. наук, эл. почта: Efimov_AE@pers.spmi.ru

В. Д. Успенская, студент кафедры машиностроения, эл. почта: uspenskaya.vasilisa@yandex.ru

А. А. Мотрич, студент кафедры машиностроения, эл. почта: motrich.2016@mail.ru

Abstract

В представленной статье рассмотрены вопросы повышения качественных показателей поверхности изделий из низколегированной стали марки 40Х, применяемых в горной промышленности. Отмечено, что на формирование шероховатости наибольшее воздействие оказывает дестабилизация процесса обработки, которая сопровождается возникновением автоколебаний. Для решения данной проблемы разработан метод сегментированной механической обработки. На первом этапе формируют сегментированную зону в поверхностном слое заготовки посредством лазерного излучения с целью модернизации исходной микроструктуры. На втором этапе осуществляют механическую обработку заготовки с сегментированной зоной, активирующую механизм сброса и кратковременной перенастройки условий резания. Реакция системы на данную механику проявляется в изменении процесса стружкообразования, что подтверждается высокоскоростной видеосъемкой. Установлено, что при резании стали 40Х происходят зарождение, надлом и дробление сливной стружки по границе сегментированной зоны, что свидетельствует об изменениях в протекании процесса стружкообразования и стабилизации обработки. Эффективность предлагаемого метода оценили по параметрам шероховатости поверхности Ra, Rz, Rv. Проведенные исследования показали, что на этапах черновой и получистовой операции общее состояние поверхности заготовки по нормированным параметрам шероховатости улучшается на 18 и 29 % соответственно. Полученные данные позволяют сделать вывод, что применение метода управляемой сегментированной обработки позволяет сократить число выполняемых операций.

keywords Шероховатость поверхности, обрабатываемость резанием, автоколебательный процесс, стружкообразование, сегментированная механическая обработка, лазерное излучение, сегментированная зона, модернизированная структура
References

1. Bolobov V. I., Popov G. G. Methodology for testing pipeline steels for resistance to grooving corrosion. Journal of Mining Institute. 2021. Vol. 252. pp. 854–860. DOI: 10.31897/PMI.2021.6.7
2. Khatir F. A., Sadeghi M. H., Akar S. Investigation of surface integrity in the laser-assisted turning of AISI 4340 hardened steel. Journal of Manufacturing Processes. 2021. Vol. 61. pp. 173–189. DOI: 10.1016/j.jmapro.2020.09.073
3. Brinksmeier E., Meyer D., Heinzela C. Process signatures - the missing link to predict surface integrity in machining. Procedia CIRP. 2018. Vol. 71. pp. 3–10. DOI: 10.1016/j.procir.2018.05.006
4. Ivanov S. L., Ivanova P. V., Kuvshinkin S. Y. Promising model range career excavators operating time assessment in real operating conditions. Journal of Mining Institute. 2020. Vol. 242, Iss. 2. pp. 228–233. DOI: 10.31897/pmi.2020.2.228
5. Zhukov I. A., Golikov N. S., Martyushev N. V. Rationalization of the design of a scraper conveyor section by means of an automated method for analyzing strength characteristics. Ustoychivoe razvitie gornykh territoriy. 2022. Vol. 14. No. 1 (51). pp. 142–150. DOI: 10.21177/1998-4502-2022-14-1-142-150
6. Fakir R., Barka N., Brousseau J., Caron-Guillemette G. Analysis of the mechanical behavior of AISI 4340 steel cylindrical specimens heat treated with fiber Laser. Journal of Manufacturing Processes. 2020. Vol. 55. pp. 41–56. DOI: 10.1016/j.jmapro.2020.03.039
7. Maksarov V. V., Vasin S. A., Keksin A. I. Improving internal threaded surfaces in highly loaded components. Russian Engineering Research. 2021. Vol. 41. Iss. 10. pp. 944–947. DOI: 10.3103/S1068798X21100191
8. Kimakh K., Chouaf A., Aghzer S., Saoud A. Improvement of fatigue life of AISI 1045 carbon steel of parts obtained by turning process through feed rate. Procedia Structural Integrity. 2018. Vol. 9. pp. 243–249. DOI: 10.1016/j.prostr.2018.06.039
9. Klevtsov V. A., Timofeev D. Y., Khalimonenko A. D. Improved design of manufacturing processes for mining machines: basing concepts. Russian Engineering Research. 2023. Vol. 43 (11). pp. 1367–1375. DOI: 10.3103/S1068798X23110151
10. Keksin A. I., Sorokopud N. I., Zakirov N. N. Peculiarities of abrasive finishing of surfaces of parts made of aluminium alloy of АМts grade in magnetic field. International Journal of Engineering, Transactions C: Aspects. 2024. Vol. 37. Iss. 06. pp. 1098–1105. DOI: 10.5829/ije.2024.37.06c.06
11. Stepanov S. N., Larionova T. A., Stepanov S. S. Study of the influence of aluminum on adhesion of stainless steel during flame spraying. Zapiski Gornogo instituta. 2020. Vol. 245. pp. 591–598. DOI: 10.31897/PMI.2020.5.11
12. Maksarov V. V., Minin A. O., Zakharova V. P. Ensuring surface quality in AlMg ites during highfrequency wave impact boring. Tsvetnye Metally. 2023. No. 4. pp. 90–95.
13. Dan Ö., Tormod J., Mathias T., Standal O. et al. Cutting process monitoring with an instrumented boring bar measuring cutting force and vibration. Procedia CIRP. 2018. Vol. 77. pp. 235–238. DOI: 10.1016/j.procir.2018.09.004
14. GOST 4513–71. Structural alloy steel bars. Specifications. Introduced: 01.01.1973.
15. Vasin S. A., Vasilev A. S., Plahotnikova E. V. Methods for assessing the technical compatibility of heterogeneous elements within a technical system. Journal of Mining Institute. 2020. Vol. 243. pp. 329–336. DOI: 10.31897/PMI.2020.3.329
16. Swain S., Panigrahi I., Sahoo A. K., Panda A. et al. Effect of tool vibration on flank wear and surface roughness during high-speed machining of 1040 steel. Journal of Failure Analysis and Prevention. 2020. Vol. 20. pp. 976–994. DOI: 10.1007/s11668-020-00905-x
17. Chun Liu, Min Wan, Yun Yang. Simulation of the chip morphology together with its evolution in machining of Inconel 718 by considering widely spread cutting speed. The International Journal of Advanced Manufacturing Technology. 2021. Vol. 116. pp. 175–195. DOI: 10.1007/s00170-021-07346-2
18. Shelikhov E., Vasilevykh S., Udalov A. The study of the dynamics of the cutting process of longitudinal turning of non-rigid shafts. Materials Today: Proceedings. 2019. Vol. 19. pp. 2323–2328. DOI: 10.1016/j.matpr.2019.07.680
19. Smirnov N. I., Drozdov A. N., Smirnov N. N. Tribodynamic aspects of the resource of electric submersible vane pumps for oil production. Journal of Mining Institute. 2023. Vol. 264. pp. 962–970.
20. Zhang J., Liu Zh., Xu Ch. Modeling and prediction of cutting temperature in the machining of H13 hard steel of multi-layer coated cutting tools. The International Journal of Advanced Manufacturing Technology. 2021. Vol. 115. pp. 3731–3739. DOI: 10.21203/rs.3.rs-300796/v1
21. Vasilkov D. V., Cherdakova V. S., Bundur M. S. Modeling of contact interactions in lathe turning with accounts for rheology in the cutting zone. IOP Conference Series: Materials Science and Engineering. 2021. Vol. 1064, Iss. 1. 012041. DOI: 10.1088/1757-899X/1064/1/012041
22. You Q., Xiong J., Li H., Guo Z. et al. Study on the microstructure and high temperature friction and wear characteristics of three CVD coated cermets. International Journal of Refractory Metals and Hard Materials. 2021. Vol. 96. 105495. DOI: 10.1016/j.ijrmhm.2021.105495
23. Bag R., Panda A., Sahoo A. K., Kumar R. Sustainable high-speed hard machining of AISI 4340 steel under dry environment. Arabian Journal for Science and Engineering. 2023. Vol. 48. pp. 3073–3096. DOI: 10.1007/s13369-022-07094-9
24. Samarjit Swain, Sudeepta Chattarjee, Isham Panigrani, Ashok Kumar Sahoo. Cutting tool vibration analysis for better surface finish during dry turning of mild steel. Materials Today: Proceedings. 2018. Vol. 5. p. 3. pp. 24605–24611. DOI: 10.1016/j.matpr.2018.10.258
25. Chichenev N. A., Gorbatyuk S. M., Karfidov A. O., Nagovitsyn V. A. et al. Influence of laser radiation on the depth of hardened layer of tool steel cutting dies. Metallurgist. 2023. Vol. 67. pp. 1038–1042. DOI: 10.1007/s11015-023-01594-1
26. Jiang Q., Bertolo V. M., Popovich V., Sietsma J. et al. Microstructure-based cleavage modelling to study grain size refinement and simulated heat affected zones of S690 high strength steel. Engineering Fracture Mechanics. 2022. Vol. 267. Iss. 19. 108432. DOI: 10.1016/j.engfracmech.2022.108432
27. Chichenev N. A., Nagovitsin V. A., Babali E. E. Influence of laser radiation on surface roughness of grade U8 steel blanking dies. Steel in Translation. 2023. Vol. 53. No. 1. pp. 68–73. DOI: 10.3103/S0967091223010023
28. Taylor C. M., Díaz F., Alegre R. Investigating the performance of 410, PH13-8Mo and 300M steels in a turning process with a focus on surface finish. Materials & Design. 2020. Vol. 195. 109062. DOI: 10.1016/j.matdes.2020.109062
29. Vasu M., Shivananda Nayaka H. Investigation of cutting force tool tip temperature and surface roughness during dry machining of spring steel. Materials Today: Proceedings. 2018. Vol. 5, P. 2. pp. 7141–7149. DOI: 10.1016/j.matpr.2017.11.379
30. Laser technologies of materials processing: modern issues of fundamental research and applied developments. Edited by V. Ya. Panchenko. Moscow: FIZMATLIT, 2009. 664 p.
31. Xavierarockiaraja S., Kuppana P. Influence of process parameters on surface temperature during laser assisted preheating of SKD 11 steel based on response surface methodology. Materials Today: Proceedings. 2017. Vol. 5. pp. 13451–13458. DOI: 10.1016/j.matpr.2018.02.339
32. Zhendong S., Zhirong L., Jon A. S. On modelling of laser assisted machining: Forward and inverse problems for heat placement control. International Journal of Machine Tools and Manufacture. 2019. Vol. 138. pp. 36–50. DOI: 10.1016/j.ijmachtools.2018.12.001
33. Chichenev N. A., Vasilyev M. V., Karfidov A. O., Chicheneva O. N. The effect of laser hardening on the operation resistance of rolls of multi-roll mills and the quality of the rolling strip. CIS Iron and Steel Review. 2023. Vol. 26. pp. 58–63.
34. Grigoryants A. G., Shiganov I. N., Misyurov A. I. Technological processes of laser processing: textbook. Moscow: Izdatelstvo MGTU imeni N. E. Baumana, 2006. 663 p.
35. Muthukumaran G., Dinesh Babu P. Laser transformation hardening of various steel grades using different laser types. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2021. Vol. 43. Iss. 2. 103. DOI: 10.1007/s40430-021-02854-4
36. Ishkinyaev E. D., Khriptovich E. V., Voronov V. D., Petrovskiy V. N. et al. Determining the size of the hardening zone by temperature fields during laser processing. Physics of Atomic Nuclei. 2022. Vol. 85. pp. 2092–2098. DOI: 10.1134/S1063778822100210
37. Khalimonenko A. D., Timofeev D. Y., Golikov T. S. Cutting tool for turning large workpieces. Journal of Physics: Conference Series. 2019. Vol. 1399. Iss. 4. 044082. DOI: 10.1088/1742-6596/1399/4/044082
38. Wei Ma, Fei Shuang. The plastic flow stability of chip materials in metal cutting process. The International Journal of Advanced Manufacturing Technology. 2019. Vol. 105. pp. 1933–1948. DOI: 10.1007/s00170-019-04353-2
39. Chao Zhang, Hongseok Choi. Study of segmented chip formation in cutting of high-strength lightweight alloys. The International Journal of Advanced Manufacturing Technology. 2021. Vol. 112. pp. 2683–2703. DOI: 10.1007/s00170-020-06057-4
40. Khalifa M., Duyun T. A. Simulation of the turning of AISI 4340 structural steel. Russian Engineering Research. 2022. Vol. 42. pp. 502–505. DOI: 10.3103/S1068798X22050173

Language of full-text russian
Full content Buy
Back