Journals →  CIS Iron and Steel Review →  2024 →  #1 →  Back

Metal Science and Metal Physics
ArticleName Investigation of properties of laminar antiferromagnetic nanostructures
DOI 10.17580/cisisr.2024.01.13
ArticleAuthor B. V. Malozyomov, V. S. Tynchenko, V. A. Kukartsev, K. A. Bashmur, T. A. Panfilova

Novosibirsk State Technical University (Novosibirsk, Russia)

B. V. Malozyomov*, Cand. Eng., Associate Prof., e-mail:

Reshetnev Siberian State University of Science and Technology (Krasnoyarsk, Russia)1 ; Siberian Federal University (Krasnoyarsk, Russia)2 ; Bauman Moscow State Technical University (Moscow, Russia)3

V. S. Tynchenko*, Cand. Eng., Associate Prof.1,2,3, e-mail:

Siberian Federal University (Krasnoyarsk, Russia)

V. A. Kukartsev, Cand. Eng., Associate Prof., Polytechnic Institute, e-mail:
K. A. Bashmur, Senior Lecturer, e-mail:
T. A. Panfilova, Cand. Eng., Associate Prof., e-mail:


*Corresponding author


When creating products using magnetoresistive materials based on magnetic and non-magnetic metals, one is focused on achieving giant magnetoresistance. Such an effect, obtained at the turn of 1980–90-ies years of the last century in superlattices, reached 10–80 % with the intensity of tens of kE at 4.5 K. By methods of physics of magnetic phenomena the regularities of interaction between ferromagnetics and antiferromagnetics, constituting alloys, are determined for strengthening the design of spin valves. Insights into the formation of anisotropy in manganese and permalloy bilayers are detailed. Differences of layer creation causally related to the thermomagnetic activation mode of the process have been determined. The use of alloys in antiferromagnetic nanostructures can indeed lead to the formation of unidirectional anisotropy with changing values of the exchange shift of the hysteresis loop. It has been shown that nanostructures containing alloys exhibit improved magnetism and exchange interaction properties. These results confirm the potential of alloys in creating materials with improved magnetic phenomena and possible applications in various fields such as electronics and magnetic devices.

keywords Antiferromagnetics, nanostructure, magnetoresistive materials, voltage, spin valve, anisotropy, bilayer

1. Seredkin V. A., Iskhakov R. S., Yakovchuk V. Y., Stolyar S. V., Myagkov V. G. Unidi-rectional anisotropy in film systems (RE–TM) / NiFe. Fizika tverdogo tela. 2003. Vol. 45., Iss. 5. pp. 927–931. DOI: 10.1134/1.1575337
2. Ramermann D., Becker A., Büker B., Hütten A., Ennen I. Nano Scaled Checkerboards: A Long Range Ordering in NiCoMnAl Magnetic Shape Memory Alloy Thin Films with Martensitic Intercalations. Appl. Sci. 2022. Vol. 12. p. 1748. DOI: 10.3390/app12031748
3. Becker A., Ramermann D., Ennen I., Büker B., Matalla-Wagner T., Gottschalk M., Hütten A. The influence of Martensitic Intercalations in Magnetic Shape Memory Ni–Co–Mn–Al Multi-layered Films. Entropy. 2021. Vol. 23. p. 462.
4. Pankratov N. Y., Nikitin S. A., Mitsiuk V. I., Ryzhkovskii V. M. Direct measurement of the magnetocaloric effect in mnznsb intermetalic compound. Journal of Magnetism and Magnetic Materials. 2019. Vol. 470. pp. 46–49.
5. Coehoorn R. Giant Magnetoresistance and Magnetic Interactions in Exchange-Biased SpinValves. In: K.H.J. Buschow (Ed.), Handbook of magnetic materials. Vol. 15. Elsevier B.V.: Amsterdam, 2003. pp. 1–199.
6. Freitas P. P., Ferreira R., Cardoso S., Cardoso F. Magnetoresistive sensors. J. Phys.: Condens. Matt. 2007. Vol. 19 (16). 165221-1-21.
7. Chappert C., Fert A., Nguyen Van Dau F. The emergence of spin electronics in data storage. Nature Materials. 2007. No. 6. pp. 813–823.
8. Grünberg P. Layered magnetic structures in research and applications. Acta Mater. 2000. Vol. 48. pp. 239–251.
9. Ovchenkova I. A., Tereshina I. S., Bogdanov A. E., Nikitin S. A., Tereshina-Chitrova E. A., Paukov M. A., Gorbunov D. I. The tremendous influence of hydrogenation on magnetism of NdMnGe. Intermetallics. 2019. Vol. 115. p. 106619.
10. Li T. Giant magnetoresistance effect in Ni buffered Co/Cu/Co sandwich. Science in China (Series E). 2002. Vol. 45 (2). pp. 166–174.
11. Yelemessov K., Sabirova L. B., Bakhmagambetova G. B., Atanova O. V. Modeling and Model Verification of the Stress-Strain State of Reinforced Polymer Concrete. Materials. 2023. Vol. 16. 3494. DOI: 10.3390/ma16093494
12. Moran T. J, Gallego J. M., Schuller I. K. Increased exchange anisotropy due to disorder at permalloy/CoO interfaces. J. Appl. Phys. 1995. Vol. 78 (3). pp. 1887–1891.
13. Isametova M. E., Nussipal R., Efremenkov E. A., Isametov A. Mathematical Modeling of the Reliability of Polymer Composite Materials. Mathematics. 2022. Vol. 10. p. 3978. DOI: 10.3390/math10213978
14. Jungblut R., Coehoorn R., Johnson M. T.; Aan de Stegge J., Reinders A. Orientational dependence of the exchange biasing in molecular beam epitaxy grown Ni80Fe20 / Fe50Mn50 bilayers. J. Appl. Phys. 1994. Vol. 75 (10). pp. 6659-6664.
15. Sorokova S. N., Efremenkov E. A., Qi M. Mathematical Modeling of Mechanical Forces and Power Balance in Electromechanical Energy Converter. Mathematics. 2023. No. 11. 2394. DOI: 10.3390/math11102394
16. Zheng R. K., Liu H., Zhang X. X., Roy V. A. L., Djurisic A. B. Exchange bias and the origin of magnetism in Mn-doped ZnO tetrapods. Appl. Phys. Lett. 2004. Vol. 85 (13). pp. 2589-2591.
17. Eid K. F., Stone M. B., Ku K. C. Maksimov O., Schiffer P., Samarth N., Shih T. C., Palmstrom C. J. Exchange biasing of the ferromagnetic semiconductor Ga1-xMnxAs. Appl. Phys. Lett. 2004., Vol. 85 (9). pp. 1556–1558.
18. Lin H. T., Chen Y. F., Huang P. W., Wang S. H., Huang J. H., Lai C. H., Lee W. N., Chin T. S. Enhancement of exchange coupling between Ga–Mn–As and Ir–Mn with self-organized Mn(Ga)As at the interface. Appl. Phys. Lett. 2006. Vol. 89 (26). pp. 262502–262503.
19. Huang P.-H., Huang H.-H., Lai C.-H. Coexistence of exchangebias fields and vertical magnetization shifts in ZnCoO/NiO system. Appl. Phys. Lett. 2007. Vol. 90 (6). 062509-3.
20. Saren A., Smith A. R., Ullakko K. Integratable magnetic shape memory micropump for high-pressure, precision microfluidic applications. Microfluid. Nanofluid. 2018. Vol. 22. p. 38.

21. Sharrock M. P. Recent advances in metal particulate recording media: toward the ultimate particle. IEEE Trans. Magn. 2000. Vol. 36 (5). pp. 2420–2425.
22. Sort J., Nogués J., Amils X., Suriñach S., Muñoz J. S. Baró M. D. Room-temperature coercivity enhancement in mechanically alloyed antiferromagnetic-ferromagnetic powders. Appl. Phys. Lett. 1999. Vol. 75 (20. pp. 3177–3179.
23. Barbic M., Scherer A. Magnetic nanostructures as amplifiers of transverse fields in magnetic resonance. Solid State Nucl. Magn. Reson. 2005. Vol. 28 (2–4). pp. 91–105.
24. Matsuzono A., Terada S., Ono H., Furukawa A. Sone T., Sasaki S., Kakihara Y., Takeda Y., Chiyokubo N. Matsuki H. Study on requirements for shielded current perpendicular to the plane spin valve heads based on dynamic read tests. J. Appl. Phys. 2002. Vol. 91 (10). pp. 7267–7269.
25. Kondratiev V. V., Klyuev R. V., Karlina A. I. Improvement of Hybrid Electrode Mate-rial Synthesis for Energy Accumulators Based on Carbon Nanotubes and Porous Structures. Micromachines. 2023. Vol. 14. p. 1288. DOI: 10.3390/mi14071288
26. Gallagher W. J., Parkin S. S. P. Development of the magnetic tunnel junction MRAM at IBM: From first junctions to a 16-Mb MRAM demonstrator chip. IBM J. Res. & Dev. 2006. Vol. 50 (1). pp. 5–23.
27. Parkin S., Jiang X., Kaiser C., Panchula A., Roche K., Samant M. Magnetically engineered spintronic sensors and memory. Proceeding of the IEEE 2003. 2003. Vol. 91 (5). pp. 661–680.
28. Dieny B., Gurney B. A., Lambert S. E., Mauri D., Parkin S. S. P., Speriosu V. S., Wilhoit D. R. Magnetoresistive sensor based on the spin valve effect. U.S. Pat. 5206590 USA. Published. 27.04.93.
29. Malozyomov B. V., Martyushev N. V., Kukartsev V. V., Tynchenko V. S., Bukhtoyarov V. V., Wu X., Tynchenko Y. A., Kukartsev V. A. Overview of Methods for Enhanced Oil Recovery from Conventional and Unconventional Reservoirs. Energies. 2023. Vol. 16. 4907. DOI: 10.3390/en16134907
30. Baumgart P. M., Dieny B., Gurney A., Nozieres J. P., Speriosu V. S., Wilhoit D. R. Dual spin valve magnetoresistive sensor. U.S. Pat. 5287238 USA. Published 15.02.94.
31. Martyushev N. V., Sorokova S. N., Efremenkov E. A., Valuev D. V., Qi M. Analysis of a Predictive Mathematical Model of Weather Changes Based on Neural Networks. Mathematics. 2024. Vol. 12. p. 480. DOI: 10.3390/math12030480
32. Radu F. Zabel H. Magnetic Heterostructures: Advances and Perspectives in Spinstructures and Spintransport. Series: Springer Tracts in Modern Physics. Vol. 227. Springer-Verlag: Berlin, 2008. pp. 97–184.
33. Shishkin P. V., Malozyomov B. V., Martyushev N. V., Sorokova S. N., Efremenkov E. A., Valuev D. V., Qi M. Mathematical Logic Model for Analysing the Controllability of Mining Equipment. Mathematics. 2024. Vol. 12. p. 1660. DOI: 10.3390/math12111660

Full content Investigation of properties of laminar antiferromagnetic nanostructures