Journals →  CIS Iron and Steel Review →  2024 →  #1 →  Back

Metal Science and Metal Physics
ArticleName Viscoplastic properties of chromium-nickel steel in short-term creep under constant stress. Part 1
DOI 10.17580/cisisr.2024.01.11
ArticleAuthor A. Yu. Kuzkin, D. A. Zadkov, V. Yu. Skeeba, V. V. Kukartsev, Ya. A. Tynchenko

Empress Catherine II Saint Petersburg Mining University (Saint Petersburg, Russia)

A. Yu. Kuzkin*, Cand. Eng., Associate Prof., Dept. of Mechanical Engineering, e-mail:
D. A. Zadkov, Cand. Eng., Associate Prof., Dept. of Mechanical Engineering, e-mail:

Novosibirsk State Technical University (Novosibirsk, Russia)

V. Yu. Skeeba, Cand. Eng., Associate Prof., Dept. of Industrial Machinery Design, e-mail:

Reshetnev Siberian State University of Science and Technology (Krasnoyarsk, Russia)1Siberian Federal University (Krasnoyarsk, Russia)2Bauman Moscow State Technical University (Moscow, Russia)3

V. V. Kukartsev, Cand. Eng., Associate Prof., Dept. of Information Economic Systems, Institute of Engineering and Economics1, Dept. of Software Engineering, Institute of Space and Information Technologies2, Artificial Intelligence Technology Scientific and Education Center3, e-mail:

Siberian Federal University (Krasnoyarsk, Russia)1Bauman Moscow State Technical University (Moscow, Russia)2

Ya. A. Tynchenko, Junior Researcher, Lab. of Biofuel Compositions1, Artificial Intelligence Technology Scientific and Education Center2, e-mail:

* Corresponding author


Mechanical processing of Chromium-nickel steel machining (cutting, pressure treatment) is impossible without taking into account their short-term creep and ductility properties. The purpose of this work is to study the formation and deformation development under short-term creep and constant effective stresses. The results of experimental tests of chromium-nickel steel 12Kh18N10Т for short-term creep at room temperature are presented. A distinctive feature of the tests is the short-term creep in a wide range of stresses study: from the initial creep limit to the material destruction. The experiments were carried out under conditions of a stepwise increasing load (liquid pressure in a closed pipe) at a constant intensity of true stresses at each stage. It is shown that the conditions for changing the load, which ensure the constancy of the stress intensity, are violated at a sufficiently high voltage. Methods for separating the deformation into a plastic component and a component from short-term creep are proposed, which can be used both under conditions of stepped loading and under continuous loading. Examples of the occurrence and deformation development during short-term creep under conditions of decreasing stress are given.

keywords Short-term creep, viscous deformation, incrementally increasing load, creep at constant effective stress, viscoplastic deformation

1. Wurmbauer H., Panzenböck M., Leitner H., Scheu C., Clemens H. ShortFterm creep behavior of chromium rich hotFwork tool steels. Materialwissenschaft und Werkstofftechnik. 2010. Vol. 41. No. 1. pp. 18–28. DOI: 10.1002/mawe.200900527
2. Smirnov S. V., Zamaraev L. M., Matafonov P. P. Short-term creep in electrical-engineering steel. Steel in Translation. 2009. Vol. 39. No. 1. pp. 17. DOI: 10.3103/S0967091209010069
3. Latyshev D., Mitukov A., Petrov M., Popov V. Viscoplastic properties of chromium-nickel steel at increasing and constant loads. Journal of Engineering Science. 2012. Vol. 2. No. 147. pp. 151–160.
4. Holdsworth S. Creep-Ductility of High Temperature Steels. A Review Metals. 2019. Vol. 9. No. 3. pp. 342. DOI: 10.3390/met9030342

5. Skelton R. P. Deformation, diffusion and ductility during creep–continuous void nucleation and creep-fatigue damage. Materials at High Temperatures. 2017. Vol. 34. No. 2. pp. 121–133. DOI: 10.1080/09603409.2016.1252888
6. Sandatrom R., Jun-Jing H. Prediction of creep ductility for austenitic stainless steels and copper. Materials at High Temperatures. 2022. Vol. 39. No. 1. pp. 1–9. DOI: 10.1080/09603409.2022.2039497
7. Maksarov V. V., Keksin A. I., Filipenko I. A. Influence of magneticabrasive processing on roughness of flat products made of AMTs grade aluminum alloy. Tsvetnye Metally. 2022. No. 7. pp. 82–87.
8. Maksarov V. V., Popov M. A., Zakharova V. P. Influence of magnetic-abrasive machining parameters on ceramic cutting tools for technological quality assurance of precision products from coldresistant steels. Chernye Metally. 2023. No. 1. pp. 67–73.
9. Olt Y. Y., Maksarov V. V., Efimov A. E. Improving the quality of the surface of products from titanium alloys in the process of machining. STIN. 2023. No. 1. pp. 26–30. DOI: 10.25960/mo.2022.5-6.41

10. Milyuts V. G., Tsukanov V. V., Pryakhin E. I., Nikitina L. B. Development of Manufacturing Technology for High-Strength Hull Steel Reducing Production Cycle and Providing High-Quality Sheets. Journal of Mining Institute. 2019. Vol. 239. p. 536. DOI: 10.31897/pmi.2019.5.536
11. Marinin M. A., Khokhlov S. V., Isheyskiy V. A. Modeling of the Welding Process of Flat Sheet Parts by an Explosion. Journal of Mining Institute. 2019. Vol. 237. p. 275. DOI: 10.31897/pmi.2019.3.275
12. Bolobov V. I., Popov G. G. Methodology for testing pipeline steels for resistance to grooving corrosion. Journal of Mining Institute. 2021. Vol. 252. No. 6. pp. 854–860. DOI: 10.31897/PMI.2021.6.7
13. Vologzhanina S., Igolkin A., Peregudov A., Baranov I., Martyushev N. Effect of the deformation degree at low temperatures on the phase transformations and properties of metastable austenitic steels. Obrabotka Metallov. 2022. Vol. 24. No. 1. pp. 73–86. DOI: 10.17212/1994-6309-2022-24.1-73-86
14. Volokitina I., Siziakova E., Fediuk R., Kolesnikov A. Development of a thermomechanical treatment mode for stainless-steel rings. Materials. 2022. Vol. 15. No. 14. DOI: 10.3390/ma15144930
15. Maksarov V. V., Keksin A. I., Filipenko I. A. Improvement of magnetic-abrasive finishing of nonuniform products made of highspeed steel in digital conditions. Key Engineering Materials. 2020. Vol. 834. pp. 71–77. DOI: 10.4028/
16. Bazhin V. Y., Issa B. Influence of heat treatment on the microstructure of steel coils of a heating tube furnace. Journal of Mining Institute. 2021. Vol. 249. No. 5. pp. 393–400. DOI: 10.31897/PMI.2021.3.8
17. Pryakhin E. I., Sharapova D. M. Understanding the structure and properties of the heat affected zone in welds and model specimens of high-strength low-alloy steels after simulated heat cycles. CIS Iron and Steel Review. 2020. Vol. 19. pp. 60–65.
18. Kolebina N. V.. Danilov V. L., Prizan C. Investigation of shortterm creep of prospective turbine steel. Nauka I obrazovanie: nauchnoe izdanie MGTU im. Baumana. Electronic journal. 2014. Vol. 11. DOI: 10.7463/1114.0733687
19. Volkov I. A., Igumnov L. A., Kazakov D. A., Shishulin D. N., Smetanin I. V. Determining relations of unsteady creep in a complex stress state. Problemy prochnosti i plastichnosti. 2016. Vol. 78. No. 4. pp. 436–451. DOI: 10.32326/1814-9146-2016-78-4-436-451
20. Bondar V. S., Abashev D. R., Fomin D. Y. Comparative analysis of plasticity theories undtr complex loading. Problemy prochnosti i plastichnosti. 2022. Vol. 84. No. 4. pp. 493–510. DOI: 10.32326/1814-9146-2022-84-4-493-510
21. Nai Q. Z., Hong X., Xue P. M., Gang W. Study on high temperature creep behaviors of P92 steel. Key Engineering Materials. 2011. pp. 452–453. 521–524. DOI: 10.4028/
22. Woodford D. A. Intrinsic ductility for structural materials as a function of stress and temperature. Mater. High Temp. 2017. Vol. 34. pp. 134–139.
23. Itoh R., Hikida T., Ogawa F., Itoh T., Sakane M., Zhang S. Biaxial tensile creep damage of Mod.9CrG1Mo steel using cruciform specimen. Proceedings of 9th China-Japan Bilateral Symposium on High Temperature Strength of Materials. 2016. pp. 60–66.
24. Kobayashi H., Ohki R., Itoh T., Sakane M. Multiaxial creep damage and lifetime evaluation under biaxial and triaxial stresses for type 304 stainless steel. Engineering Fracture Mechanics. 2017. Vol. 174. pp. 30–43. DOI: 10.1016/j.engfracmech.2017.01.001
25. Sakane M., Kobayashi H., Ohki R., Itoh T. Creep void formation and rupture lifetime in multiaxial stress states. Key Engineering Materials. 2019. Vol. 795. pp. 159–164. DOI: 10.4028/
26. Karlina A. I., Kondratyev V. V., Kolosov A. D., Balanovskiy A. E., Ivanov N. A. Production of new nanostructures for modification of steels and cast irons. IOP Conference Series: Materials Science and Engineering. 2019. Vol. 560. No. 1. p. 012183.
27. John H. Creep Strength And Ductility of 9 to 12 % Chromium Steels. Materials at High Temperatures. 2004. Vol. 21. No. 1. pp. 41–46. DOI: 10.1179/mht.2004.006
28. Wilshire B., Scharning P. Extrapolation of creep life data for 1Cr–0.5Mo steel. International Journal of Pressure Vessels and Piping. 2008. Vol. 85. No. 10. pp. 739–743. DOI: 10.1016/j.ijpvp.2008.04.002
29. Wilshire B., Scharning P. Creep ductilities of 9–12 % chromium steels. Scripta Materialia. 2007. Vol. 56. No. 12. pp. 1023–1026. DOI: 10.1016/j.scriptamat.2007.03.003
30. Zhukov A. Unloading of plastically deformed metals and sequential loading. Byulleten AN SSSR. Mekhanika tverdykh tel. 1989. Vol. 2. pp. 179–183.
31. Zhukov A. Non-ferrous metals and alloys creep at room tempera ture beyond elasticity. Inzherenyi zhurnal. 1963. Vol. 2. pp. 409–413.
32. Martyushev N. V., Kozlov V. N., Qi M., Tynchenko V. S., Kononenko R. V., Konyukhov V. Yu., Valuev D. V. Production of Work-pieces from Martensitic Stainless Steel Using Electron-Beam Surfacing and Investigation of Cutting Forces When Milling Workpieces. Materials. 2023. Vol. 16. pp. 4529. DOI: 10.3390/ma16134529
33. Gomaa S., Sham T.-L., Krempl. E. Finite element formulation for finite deformation, isotropic viscoplasticity theory based on overstress (FVBO). International Journal of Solids and Structures. 2004. Vol. 41. No. 13. pp. 3607–3624.
34. Krempl E. Phenomenologigal Modelling of Viscoplasticity. Rev. phys. appl. 1988. Vol. 23. No. 4. pp. 331–338.
35. Giginyak F. F., Maslo O. M. A relationship between damage in 10GN2MFA steel and low-cycle strain-controlled loading at different deformation frequencies. Strength of Materials. 2017. Vol. 49. No. 2. pp. 343–348. DOI: 10.1007/s11223-017-9874-4
36. Yelemessov K., Baskanbayeva D., Martyushev N. V., Skeeba V. Y., Gozbenko V. E., Karlina A. I. Change in the Properties of Rail Steels during Operation and Reutilization of Rails. Metals. 2023. Vol. 13. pp. 1043. DOI: 10.3390/met13061043
37. Vasin R. Constitutive equations of plasticity theory. Itogi nauki i techniki. 1990. Vol. 21. pp. 3–75.
38. Semenov A., Melnikov B., Gorokhov M., Ulbricht V. Prevention of cyclic instability at the modeling of elasto-plastic deformation at large strains under proportional and non-proportional loading. Proceedings of SPIE. 2007. Vol. 6597. p. 659710.
39. Semenov A., Melnikov B., Gorokhov M. About the causes of cyclical instability at computations of large elasto-plastic strains. Proceedings of SPIE. 2005. Vol. 5831. pp. 167–173.
40. Knyazev S., Dmitrienko V., Gizatulin R., Martyushev N., Valuev D., Karlina A. Research for Replacement of Gray Cast Irons for Manufacturing Electrolyzer Gas Collection Bell Cast Components. Metallurgist. 2023. Vol. 66. No. 9–10. pp. 1201–1215. DOI: 10.1007/s11015-023-01433-3
41. Novozhilov V., Kadashevich U. Microstrains in construction materials. Leningrad: Mashinostroenie. 1990. pp. 78–123.
42. Isametova M. E., Martyushev N. V., Karlina Yu. I., Kononenko R. V., Skeeba V. Y. , Absadykov B. N. Thermal Pulse Processing of Blanks of Small-Sized Parts Made of Beryllium Bronze and 29 NK Alloy. Materials. 2022. Vol. 15. pp. 6682. DOI: 10.3390/ma15196682
43. Wang Y., Zhang W., Wang Y., Lim Y. C., Yu X., Feng Z. Experimental Evaluation of Localized Creep Deformation in Grade 91 Steel Weldments. Materials Science and Engineering A. 2021. Vol. 799. pp. 140356. DOI: 10.1016/j.msea.2020.140356
44. Nguyen T. T., Jeong T. M., Erten D. T., Yoon K. B.Creep deformation and rupture behaviour of service-exposed super 304H steel boiler tubes. Materials at High Temperatures. 2021. Vol. 38. No. 1. pp. 61–72. DOI: 10.1080/09603409.2020.1830609
45. Martyushev N. V., Bublik D. A., Kukartsev V. V., Tynchenko V. S., Klyuev R. V., Tynchenko Y. A., Karlina Yu. I. Provision of Rational Parameters for the Turning Mode of Small-Sized Parts Made of the 29 NK Alloy and Beryllium Bronze for Subsequent Thermal Pulse Deburring. Materials. 2023. Vol. 16. pp. 3490. DOI: 10.3390/ma16093490
46. Cheng C. S. Theory of Factorial Design: Single- and Multi-Stratum Experiments. CRC Press. 2016. 409 p.
47. Zverev E., Skeeba V., Ivancivsky V., Vakhrushev N., Titova K., Lobanov D., Martyushev N. Determining the Residual Stresses in High-Chromium Cast Iron Plasma Coatings. Key Engineering Materials. 2022. Vol. 909. pp. 94–100. DOI: 10.4028/p-2a9z55
48. Adigamov R. R., Baraboshkin K. A., Mishnev P. A., Karlina A. I. Development of rolling procedures for pipes of K55 strength class at the laboratorial mill. CIS Iron and Steel Review. 2022. Vol. 24. pp. 60–66.

Full content Viscoplastic properties of chromium-nickel steel in short-term creep under constant stress. Part 1