Journals →  CIS Iron and Steel Review →  2024 →  #1 →  Back

ArticleName Smelting of high-carbon ferrochromium from pre-reduced chromite raw materials
DOI 10.17580/cisisr.2024.01.03
ArticleAuthor E. Zh. Shabanov, Zh. K. Saulebek, A. S. Akhmetov, G. K. Mukhtarkhanova

Zh. Abishev Chemical and Metallurgical Institute (Karaganda, Kazakhstan)

E. Zh. Shabanov, PhD, Associate Professor, Leading Researcher, Laboratory of Ferroalloys and Reduction Processes, e-mail:
Zh. K. Saulebek, Master Eng., Junior Researcher, Laboratory of Ferroalloys and Reduction Processes, e-mail:
A. S. Akhmetov, PhD, Senior Researcher, Laboratory of Ferroalloys and Reduction Processes, e-mail:


Research Center “INNTECH” LLP (Karaganda, Kazakhstan)
G. K. Mukhtarkhanova, Head of the Laboratory, e-mail:


The article presents the results of smelting of high-carbon ferrochromium (HCFeCr) from pre-reduced chromite raw materials. Experimental melts of three batches of pre-reduced chromite raw material with varying degrees of chromium metallization were conducted using a 0.2 MVA furnace at the Zh. Abishev Chemical-Metallurgical Institute in Karaganda. To assess the technical-economic indicators of remelting of pre-reduced chromite raw materials in industrial DC furnaces, a batch of basic charge for HCFeCr smelting, containing chromite ore, coke breeze and quartz flux, was separately smelted. The study determined the relationship between specific energy consumption for HCFeCr production and content of metallized chromium in the experimental furnace, ranging from 15.37 % to 22.28 %. The assessment results indicate possibility of halving the specific energy consumption to 3.4 MW·h per ton of chromium, when content of metallized chromium in pre-reduced product is 22.28 %.

The research was carried out under financial support of the Committee of science of the Ministry of education and science of Kazakhstan Republic (Grant No. AP14871610).

keywords Smelting, metallization, ferroalloy, chromite ore, coke breeze, high-carbon ferrochromium, ore smelting furnace

1. Wei W., Samuelsson P. B., Jönsson P. G. et al. Energy Consumption and Greenhouse Gas Emissions of High-Carbon Ferrochrome Production. JOM. 75. 2023. pp. 1206–1220. DOI: 10.1007/s11837-023-05707-8
2. Hamuyuni J., Johto H., Haimi T., Bunjaku A., Mäkelä P., Närhi L., Lindgren M. Evaluating the carbon footprint of ferrochrome production technologies using HSC–SIM and OpenLCA software packages. Proceedings of the 16th International Ferro-Alloys Congress (INFACON XVI). September 12, 2021.
3. Davies J., Tangstad M., Ringdalen E., Beukes J. P., Bessarabov D., du Preez S. P. The Effect of Pre-Oxidation on the Reducibility of Chromite Using Hydrogen: A Preliminary Study. Minerals. 2022. 12. 911. DOI: 10.3390/min12070911.
4. Makhambetov Y. E., Abdirashit A., Kuatbay Y., Issengaliyeva G., Angsapov A. Research of microstructure and phase composition of a new complex alloy – alumosilicomanganese (Al–Si–Mn). Metalurgija. 2022. Vol. 61 (3–4). pp. 804–806.
5. Wagner M. Thermal analysis in practice. Fundamental Aspects. Carl Hanser Verlag GmbH & Co. KG. 2018. p. 349.
6. Ye, Lei et al. Efficient Pre-Reduction of Chromite Ore with Biochar under Microwave Irradiation. Sustainable Materials and Technologies. 2023. September. Vol. 37. p. e00644. DOI: 10.1016/j.susmat.2023.e00644
7. Roshchin A. V., Roshchin V. E., Ryabukhin A. G., Goikhenberg Yu. M. Interaction of ore and non-metallic components during solid-phase metallization of interspersed chrome ores. Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. 2005. No. 10 pp. 56–64.
8. Shotanov A. E., Roshchin A. V., Panfilov V. P., Nurgali N. Z. Prereduction of Chromite Raw Materials by the Höganäs Method. Metallurgist. 2022. Vol. 66. pp. 871–880.
9. Kapelyushin Yu. E. Comparative review on the technologies of briquetting, sintering, pelletizing and direct use of fines in processing of ore and technogenic materials. CIS Iron and Steel Review. 2023. Vol. 26. pp. 4–11.
10. Zhunusov A. K., Tolymbekova L. B., Bykov P. O., Zayakin O. V. Melting Ferrochrome Using Chrome-Ore Briquettes. Metallurgist. 2023. Vol. 67. pp. 606–61. DOI: 10.1007/s11015-023-01549-6
11. Kleynhans E. L. J., Neizel B. W., Beukes J. P., van Zyl P. G. Utilisation of pre-oxidised ore in the pelletised chromite pre-reduction process. Minerals Engineering. 2016. Vol. 92. pp. 114–124. DOI: 10.1016/j.mineng.2016.03.005
12. Chakraborty D., Ranganathan S., Sinha S. Carbothermic Reduction of Chromite Ore Under Different Flow Rates of Inert Gas. Metall. Mater. Trans. B. 2010. Vol. 41. pp. 10–18. DOI: 10.1007/s11663-009-9297-0
13. Zayakin O. V., Zhuchkov V. I., Izbembetov D. D. et al. Solidphase carbothermic reduction of the components of chrome-iron ore raw materials. Russian Metallurgy (Metally). 2011. pp. 1128–1130. DOI: 10.1134/S0036029511120226
14. Salina V. A., Zhuchkov V. I., Sychev A. V. Thermodynamic Simulation of the Carbothermic Reduction of Chromium from the Cr2O3–FeO–CaO–SiO2–MgO–Al2O3 Oxide System. Russian Metallurgy (Metally). 2021. No. 2. pp. 229–233.
15. du Preez S. P., van Kaam T. P. M., Ringdalen E., Tangstad M., Morita K., Bessarabov D. G., van Zyl P. G., Beukes J. P. An overview of currently applied ferrochrome production processes and their waste management practices. Minerals. 2023. Vol. 13. p. 809. DOI: 10.3390/min13060809
16. Dlamini R., von Blottnitz H. Resource Intensity Trends in the South African Ferrochrome Industry from 2007 to 2020. Minerals. 2023. Vol. 13. No. 44. DOI: 10.3390/min13010044
17. McCullough S., Hockaday S., Johnson C., Barcza N. Pre-reduction and smelting characteristics of Kazakhstan ore samples. Proceedings of the 12th International Ferroalloys Congress: Sustainable Future. 2010. pp. 249–262.
18. Oterdoom H., Zietsman J. DC furnace smelting of ilmenite and chromite: Future opportunities in a region of great potential. Heavy Minerals Conference. Cape Town. South Africa. 2019. pp. 25–40.
19. Shabanov Y., Baisanov S., Grigorovich K., Toleukadyr R., Saulebek Z. Recovery of low-carbon ferrochrome with multi-component aluminum-silicon-chrome (Al–Si–Cr) alloy. Metalurgija. 2020. Vol. 59 (4). pp. 514–516.
20. Jiayang Gu, Ruifeng Li, Shungao Chen, Yuhao Zhang, Shujin Chen, Heng Gu. Microstructure and wear behavior of laser cladded Ni45 + high-carbon ferrochrome composite coatings. Materials. 2020. Vol. 13. 1611. p. 9. DOI: 10.3390/ma13071611.
21. Pikna L., Hezelova M., Morillon A., Algermissen D., Milkovic O., Findorak R., Cesnek M., Briancin J. Recovery of chromium from slags leachates by electrocoagulation and solid product characterization. Metals. 2020. Vol. 10. 1593. p. 17. DOI: 10.3390/met10121593
22. Horckmans L., Möckel R., Nielsen P., Kukurugya F., Vanhoof Ch., Morillon A., Algermissen D. Multi-Analytical Characterization of Slags to Determine the Chromium Concentration for a Possible Re-Extraction. Minerals. 2019. Vol. 9. 646. p. 14. DOI: 10.3390/min9100646
23. Meiyan Hang, JiechaoWang, Xuebin Zhou, Mengjie Sun. Design and study of physical and mechanical properties of concrete based on ferrochrome slag and its mechanism analysis. Buildings. 2023. Vol. 13. 54. p. 16. DOI: 10.3390/buildings13010054
24. Ultarakova A., Tastanov Y., Sadykov N., Tastanova A., Yerzhanova Z. Physical and Chemical Studies of Smelting Products of Calcinated Composite Pellets Produced from Chromium Production Waste. J. Compos. Sci. 2023. No. 7. p. 386. DOI: 10.3390/jcs7090386
25. Zhumagaliev Ye., Yerekeyeva G., Nurumgaliyev S., Mongolkhan O., Davletova S., Sagynbekova G. Thermodynamic-diagram analysis of the Fe–Si–Al–Cr system with the construction of diagrams of phase relations. Metalurgija. 2022. Vol. 61 (3–4). pp. 825–827.
26. Shabanov, Y., Makhambetov Y., Saulebek Z., Toleukadyr R., Baisanov S., Nurgali N., Shotanov A., Dossekenov M., Zhumagaliyev Y. Pilot Tests of Pre-Reduction in Chromium Raw Materials from Donskoy Ore Mining and Processing Plant and Melting of High-Carbon Ferrochromium. Metals. 2024. Vol. 14. p. 202 DOI: 10.3390/met14020202

Full content Smelting of high-carbon ferrochromium from pre-reduced chromite raw materials