Journals →  Non-ferrous Мetals →  2024 →  #1 →  Back

HEAVY NON-FERROUS METALS
ArticleName Review of technology for hydrometallurgical processing of lateritic nickel ores over the past 20 years in the world
DOI 10.17580/nfm.2024.01.03
ArticleAuthor Mamyrbayeva K. K., Kuandykova A. N., Chepushtanova T. A., Merkibayev Y. S.
ArticleAuthorData

Satbayev University, Almaty, Kazakhstan

K. K. Mamyrbayeva, Ph.D., Associate Professor of Department “Metallurgical Processes, Heat Engineering and Technology of Special Materials”, Mining and Metallurgical Institute, e-mail: k.mamyrbayeva@satbayev.university
A. N. Kuandykova*, Master's Degree, Ph.D. Student of Department “Metallurgical Processes, Heat Engineering and Technology of Special Materials”, Mining and Metallurgical Institute, e-mail: almira.kuandykova@stud.satbayev.university
T. A. Chepushtanova, Ph.D.,Candidate of Technical Sciences, Head of Department “Metallurgical Processes, Heat
Engineering and Technology of Special Materials”, Associate Professor, Mining and Metallurgical Institute, e-mail: t.chepushtanova@satbayev.university
Y. S. Merkibayev*, Ph.D., Head of Laboratories of Department “Metallurgical Processes, Heat Engineering and Technology
of Special Materials”, Mining and Metallurgical Institute, e-mail: y.merkibayev@satbayev.university


*Correspondence author.

Abstract

In recent years, there has been an increased demand for nickel-cobalt-containing batteries, which in turn adds a lot of interest in the production of these metals in large volumes. Due to a contraction of the volume of nickel sulfide ores, the majority of producers consider laterite deposits as a potential source of nickel and cobalt. However, processing laterites by traditional pyrometallurgical methods is economically unprofitable. Research has shown that the use of combined and hydrometallurgical methods can be promising. This article is devoted to a review of the results of research and articles on the extraction of nickel and cobalt from laterite ores over the past 20 years. Current technological schemes for the production of nickel and cobalt using combined manufacturing processes are presented, as well as the results of scientific research on increasing the recovery degree of nickel and cobalt from low-grade refractory laterite ores using preliminary activating roasting, various leaching reagents, oxidizing agents, bacteria, etc. Growing interest in nickel production has also been observed in Kazakhstan and research work on the extraction of target metals from local laterite ores is being intensively carried out. According to the investors’ forecast, the first mining in the republic and full commissioning of nickel production are expected in 2025.

This study was funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (grant no. AP19680477).

keywords Leaching, nickel, cobalt, hydrometallurgy, laterites
References

1. Mishra B. Cobalt and Nickel Production. In: Encyclopedia of Materials, Science and Technology (2nd ed.). Elsevier Ltd., 2001. pp. 1288–1294.
2. Gudivada G., Pandey A. K. Recent Developments in Nickel-Based Superalloys for Gas Turbine Applications. Journal of Alloys and Compounds. 2023.Vol. 963. 171128.
3. Yao Li, Kai Chen, R. Lakshmi Narayan, Upadrasta Ramamurty, Yudong Wang, Juncheng Long, Nobumichi Tamura, Xin Zhou. Multi-scale Microstructural Investigation of a Laser 3D Printed Ni-Based Superalloy. Additive Manufacturing. 2020. Vol. 34. 101220.
4. Ronghai Wu, Yunsong Zhao, Qian Yin, Jiapo Wang, Xing Ai, Zhixun Wen. Atomistic Simulation Studies of Ni-Based Superalloys. Journal of Alloys and Compounds. 2021. Vol. 855, Pt. 1. 157355.
5. Cattaneo E., Riegel B. Chemistry, Electrochemistry, and Electrochemical Applications | Nickel. In: Encyclopedia of Electrochemical Power Sources. Elsevier, 2009. pp. 796–809.
6. Shukla A., Venugopalan S., Hariprakash B. Nickel-Based Rechargeable Batteries. Journal of Power Sources. 2001. Vol. 100, Iss. 1-2. pp. 125–148.
7. Luczak J., Lieder M. Nickel-Based Catalysts for Electrolytic Decomposition of Ammonia Towards Hydrogen Production. Advances in Colloid and Interface Science. 2023. Vol. 319. 102963.
8. Hall D. S., Lockwood D. J., Bock C., MacDougall B. R. Nickel Hydroxides and Related Materials: a Review of Their Structures, Synthesis and Properties. Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences. 2015. Vol. 471. 20140792.
9. Cai X., Hu T., Hou H., Zhu P., Liu R., Peng J., Luo W., Yu H. A Review for Nickel Oxide Hole Transport Layer and Its Application in Halide Perovskite Solar Cells. Materials Today Sustainability. 2023. Vol. 23. 100438.

10. Ding D., Wei W., He X., Ding S. Thermally Stable Ni@SiO2 Core-Shell Nanoparticles for High-Temperature Solar Selective Absorber. Solar Energy. 2021. Vol. 228. pp. 413–417.
11. Helal A., Fettouhi M., Arafat Md. E., Khan M. Y., Sanhoob M. A. Nickel Based Metal-Organic Framework as Catalyst for Chemical Fixation of CO2 in Oxazolidinone Synthesis. Journal of CO2 Utilization. 2021. Vol. 50. 101603.
12. Li Y., Tan C., Wei S., Cui L., Fan X., Pan Q., Lai F., Zheng F., Wang H., Li Q. Stable Surface Construction of the Ni-Rich LiNi0.8Mn0.1Co0.1O2 Cathode Material for High Performance Lithium-Ion Batteries. Journal of Materials Chemistry A. 2020. Vol. 8. pp. 21649–21660.
13. Yang J., Liang X., Ryu H.-H., Yoon C. S., Sun Y.-K. Ni-Rich Layered Cathodes for Lithium-Ion Batteries: from Challenges to the Future. Energy Storage Materials. 2023. Vol. 63. 102969.
14. Glencore PLC. Annual Reports. 2022. URL: https://www.annualreports.com/Company/glencore-plc (Accessed Date: 12.04.2024).
15. Mineral Commodity Summaries 2023. USGS. URL: https://www.usgs.gov/publications/mineral-commodity-summaries-2023 (Accessed Date: 12.04.2024).
16. Thorne R. L., Roberts S., Herrington R. Climate Change and the Formation of Nickel Laterites. Geology. 2012. Vol. 40. pp. 331–334.
17. Butt C. R. M., Cluzel D. Nickel Laterite Ore Deposits: Weathered Serpentinites. Elements. 2013. Vol. 9, Iss. 2. pp. 123–128.
18. Brand N. W., Butt C. R. M., Elias M. Nickel Laterites: Classification and Features. AGSO Journal of Australian Geology & Geophysics. 1998. Vol. 17, Iss. 4. pp. 81–88.
19. Gleeson S. A., Butt C. R. M., Elias M., Nickel Laterites: a Review. SEG Discovery. 2003. Vol. 54. pp 1–18.
20. Barnes S. J., Staude S., Le Vaillant M., Piña R., Lightfoot P. C. Sulfide-Silicate Textures in Magmatic Ni – Cu-PGE Sulfide Ore Deposits: Massive, Semi-Massive and Sulfide-Matrix Breccia Ores. Ore Geology Reviews. 2018. Vol. 101. pp. 629–651.
21. Barnes S. J., Yao Z.-S., Mao Y.-J., Jesus A. P., Yang S., Taranovic V., Maier W. D. Nickel in Olivine as an Exploration Indicator for Magmatic Ni – Cu Sulfide Deposits: a Data Review and Re-evaluation. American Mineralogist. 2023. Vol. 108, Iss. 1. pp. 1–17.
22. Hoatson D. M., Jaireth S., Jaques A. L. Nickel Sulfide Deposits in Australia: Characteristics, Resources and Potential. Ore Geology Reviews. 2006. Vol. 29, Iss. 3-4. pp. 177–241.
23. Naldrett A. J. Nickel Sulfide Deposits: Classification, composition and genesis. In: Economic Geology - Seventy-Fifth Anniversary Volume. Economic Geology Publishing Company, 1981. pp. 628–685.
24. Quast K., Connor J. N., Skinner W., Robinson D. J., Addai-Mensah J. Preconcentration Strategies in the Processing of Nickel Laterite Ores. Part 1: Literature Review. Minerals Engineering. 2015. Vol. 79. pp. 261–268.
25. Quast K., Connor J. N., Skinner W., Robinson D. J., Li J., Addai-Mensah J. Preconcentration Strategies in the Processing of Nickel Laterite Ores. Part 2: Laboratory Experiments. Minerals Engineering. 2015. Vol. 79. pp. 269–278.
26. Quast K., Connor J. N., Skinner W., Robinson D. J., Addai-Mensah, J. Preconcentration Strategies in the Processing of Nickel Laterite Ores. Part 3: Flotation Testing. Minerals Engineering. 2015. Vol. 79. pp. 279–286.
27. Stankovic S., Stopic S., Sokic M., Markovic B., Friedrich B. Review of the Past, Present, and Future of the Hydrometallurgical Production of Nickel and Cobalt from Lateritic Ores. Metallurgical and Materials Engineering. 2020. Vol. 26, Iss. 2. pp. 199–208.
28. Üyildiz A., Girgin I. High Pressure Sulphuric Acid Leaching of Lateritic Nickel Ore. Physicochemical Problems of Mineral Processing. 2017. Vol. 53, Iss. 1. pp. 475–488.
29. Kyle J. H. Nickel Laterite Processing Tchnologies-Where to Next? ALTA 2010 Nickel, Cobalt, Copper, Uranium and REE Conference. 2010. pp. 1–37.
30. Avfukova L. S., Belova T. P. Methods of Acid Leaching of Nickel-Containing Ores. Advances in Current Natural Sciences. 2022. Iss. 4. pp. 80–85.
31. Rhamdhani M. A., Chen J., Hidayat T., Jak E., Hayes P. C. Advances in Research on Nickel Production Through the Caron Process. Proceedings of EMC 2009. pp. 899–913.
32. Asselin E. Thermochemistry of the Fe, Ni and Co-NH3-H2O Systems as They Relate to the Caron Process: a Review. Minerals and Metallurgical Processing. 2011. Vol. 28, Iss. 4. pp. 169–175.
33. Rizky M. A., Sukamto U., Setiawan A. Literature Review: Comparison of Caron Process and RKEF On The Processing of Nickel Laterite Ore For Battery. Jurnal Mineral, Energi, dan Lingkungan. 2023 Vol. 6, Iss. 2. pp. 47–56.
34. Chang Y., Zhao K., Pesic B. Selective Leaching of Nickel from Prereduced Limonitic Laterite Under Moderate HPAL Conditions – Part I: Dissolution. Journal of Mining and Metallurgy, Section B: Metallurgy. 2016. Vol. 52, Iss. 2. pp. 127–134.
35. Mano E., Caner L., Mexias A., Petit S., Chaves A. Nismectitic Ore Behaviour During the Caron Process. Hydrometallurgy. 2019. Vol. 186. pp. 200–209.
36. Meshram P., Pandey A., Pandey B. D. Advanced Review on Extraction of Nickel from Primary and Secondary Sources. Mineral Processing and Extractive Metallurgy Review. 2019. Vol. 40. pp. 157–193.
37. Fathan B., Muhammad R. S., Soesaptri O., Fajar N., Widi A., Erik P., Diah S. Use of Monosodium Glutamate (MSG) for Green Leaching Process: An Overview. Periodico di Mineralogia. 2022. Vol. 91. pp. 155–162.
38. Gultom T., Sianipar A. High Pressure Acid Leaching: a Newly Introduced Technology in Indonesia. IOP Conference Series: Earth and Environmental Science. 2010. Vol. 413. 012015.
39. Vahed A., Mackey P., Warner A. “Around the Nickel World in Eighty Days”: A Virtual Tour of World Nickel Sulphide and Laterite Operations and Technologies. Ni – Co 2021: The 5th International Symposium on Nickel and Cobalt. 2021. pp. 3–39.
40. Büsra Ö. D., Ilkay B. C. Effects of Staged-Addition of Acid on High Nisingle Bond Co Recovery and Low Scale Formation in HPAL of a Lateritic Ore. Hydrometallurgy. 2022. Vol. 213. 105935.

41. Moskalyk R. R., Alfantazi A. M. Nickel Laterite Processing and Electrowinning Practice. Minerals Engineering. 2002. Vol. 15. Iss. 8. pp. 593–605.
42. Yong-wei W., Wen-qing Q., Jun-wei H. Efficient nickel extraction from nickel matte by combined atmospheric-oxygen pressure acid leaching: Thermodynamic analysis and sulfur conversion mechanism. Minerals Engineering. 2024. Vol. 207. 108577.
43. Ferrer C. Laterites from Different Ultramafic Rocks in Mindoro, Philippines: Effect of Bedrock Mineralogy on the Mineralogy and Geochemistry of Laterites. Master’s Thesis, UP Diliman, Quezon City, Philippines. 2013. pp. 41–47.
44. Tupaz C. A. J., Watanabe Y., Sanematsu K., Echigo T., Arcilla C., Ferrer Ch. Ni-Co Mineralization in the Intex Laterite Deposit, Mindoro, Philippines. Minerals. 2020. Vol. 10, Iss. 7. pp. 579.
45. Keller P., Anderson C. The Production of Critical Materials as By Products. Aspects in Mining & Mineral Science. 2008. Vol. 2, Iss. 2. pp. 208–221. URL: https://crimsonpublishers.com/amms/fulltext/AMMS.000532.php (Accesed Date: 12.04.2024).
46. Oxley A., Smith M., Caceres O. Why Heap Leach Nickel Laterites? Minerals Engineering. 2016. Vol. 88. pp. 53–60.
47. Watling H. R., Elliot A. D., Fletcher H. M., Robinson D. J., Sully D. M. Ore Mineralogy of Nickel Laterites: Controls on Processing Characteristics Under Simulated Heap-Leach Conditions. Australian Journal of Earth Sciences. 2011. Vol. 58, Iss. 7. pp. 725–744.
48. Castro F. P. M., Macieira P. C., Araújo I. M. C. P., Gobbo O. R. A., Pereira G. S. P., Faulstich F. R. L. Evaluation of Nickel Extraction Kinetics per Mineral Phase in Laterite ore. In: Proceedings of the 39 th Annual Hydrometallurgy Meeting, Sudbury, Canada. 2009. pp. 445–458.
49. Agatzini-Leonardou S., Tsakiridis P. E., Oustadakis P., Karidakis T., Katsiapi A. Hydrometallurgical Process for the Separation and Recovery of Nickel from Sulphate Heap Leach Liquor of Nickeliferrous Laterite Ores. Minerals Engineering. 2009. Vol. 22, Iss. 14. pp. 1181–1192

50. Nosrati A., Skinner W., Robinson D. J., Addai-Mensah J. Microstructure Analysis of Ni Laterite Agglomerates for Enhanced Heap Leaching. Powder Technology. 2012. Vol. 232. pp. 106–112.
51. Nosrati A., Quast K., Xu D., Skinner W., Robinson D. J., Addai-Mensah J. Agglomeration and Column Leaching Behaviour of Nickel Laterite Ores: Effect of Ore Mineralogy and Particle Size Distribution. Hydrometallurgy. 2014. Vol. 146. pp. 29–39.
52. Li J., Bunney K., Watling H. R., Robinson D. J. Thermal Pre-Treatment of Refractory Limonite Ores to Enhance the Extraction of Nickel and Cobalt Under Heap Leaching Conditions. Minerals Engineering. 2013. Vol. 41. pp. 71–78.
53. Arpalahti A., Lundström M. Dual Aeration Tests with Heap Leaching of a Pyrrhotite-Rich Pentlandite Ore. Hydrometallurgy. 2019. Vol. 185. pp. 173–185.
54. Stankovic S., Martin M., Goldmann S., Gäbler H.-E., Ufer K., Haubrich F., Moutinho V. F., Giese E. C., Neumann R., Stropper J. L., Stummeyer J., Kaufhold S., Dohrmann R., Oxley A., Marbler H., Schippers A. Effect of Mineralogy on Co and Ni Extraction from Brazilian Limonitic Laterites via Bioleaching and Chemical Leaching. Minerals Engineering. 2022. Vol. 184. 107604.
55. Jun L., Guanghui L., Mingjun R., Zhiwei P., Yuanbo Zh., Tao J. Atmospheric Leaching Characteristics of Nickel and Iron in Limonitic Laterite with Sulfuric Acid in the Presence of Sodium Sulfite. Minerals Engineering. 2015. Vol. 78. pp. 38–44.
56. Kaya S., Topkaya Y. High Pressure Acid Leaching of a Refractory Lateritic Nickel Ore. Minerals Engineering. 2011. Vol. 24. pp. 1188–1197.
57. Mäkinen J., Rintala L., Salo M., Kuutti L. et al. Metal Recovery from Low Grade Ores and Wastes Plus. D3.6 Report on metal extraction of low grade ores and wastes. METGROW+ H2020 project, grant agreement No 690088. 2018. URL: https://cordis.europa.eu/project/id/690088/results (Accessed Date: 12.04.2024).
58. Basturkcu, H., Acarkan, N. Leaching Behaviour of a Turkish Lateritic ore in the Presence of Additives. Physicochemical Problems of Mineral Processing. 2016. Vol. 52, Iss. 1. pp. 112–123.
59. Klyushnikov A. M., Umansky A. B. Application of Fluorides to a Process of Leaching of Oxidized Nickelferous Ores from the Ural. ESSTUM Bulletin. 2013. Vol. 42, Iss. 3. pp. 5–9.
60. Li J., Xu Z., Wang R., Yang G. Y., Yang Y. Study on Leaching Kinetics of Laterite Ore Using Hydrochloric Acid. Physicochemical Problems of Mineral Processing. 2019. Vol. 55, Iss. 3. pp. 711–720.
61. Eksteen J., Oraby E. A., Nguyen V. Leaching and Ion Exchange Based Recovery of Nickel and Cobalt from a Low Grade, Serpentine-Rich Sulfide Ore Using an Alkaline Glycine Lixiviant System. Minerals Engineering. 2020. Vol. 145. 106073.
62. Astuti W., Hirajima T., Sasaki K., Okibe N. Comparison of Atmospheric Citric Acid Leaching Kinetics of Nickel from Different Indonesian Saprolitic Ores. Hydrometallurgy. 2016. Vol. 161. pp. 138–151.
63. Thangavelu V., Tang J., Ryan D., Valix M. Effect of Saline Stress on Fungi Metabolism and Biological Leaching of Weathered Saprolite Ores. Minerals Engineering. 2006. Vol. 19, Iss. 2. pp. 1266–1273.
64. Congren Y., Wenqing Q., Shaoshi L., Jun W., Yansheng Zh., Fen J., Liuyi R., Tian Zh., Ziyong Ch. Bioleaching of a Low Grade Nickel – Copper – Cobalt Sulfide Ore. Hydrometallurgy. 2011. Vol. 106, Iss. 1–2. pp. 32-37.
65. Gholamreza Kh., Hadi A., Amirhossein M., Roozbeh S., Mirsaleh M., Ali R., Golnaz J., Hojat N. Green Extraction of Nickel and Valuable Metals from Pyrrhotite Samples with Different Crystallographic Structures Through Acidophilic Bioleaching. Journal of Environmental Management. 2022. Vol. 317. 115394.
66. Smaranika M., Chandan S., Bansi D., Lala B., Barada K. Biological Leaching of Nickel and Cobalt from Lateritic Nickel ore of Sukinda Mines. Korean Journal of Chemical Engineering. 2009. Vol. 26, Iss. 1. pp. 108–114.
67. Hosseini Nasab M., Noaparast M., Abdollahi H. Direct and Indirect Bio-Leaching of Co and Ni from an Iron-Rich Laterite Ore using Delftia Acidovorans and Acidithiobacillus Ferrooxidans. Journal of Mining and Environment. 2021. Vol. 12, Iss. 2. pp. 471–489.

68. Yingbo D., Jinyu Z., Hai L. Bioleaching of Heavy Metals from Metal Tailings Utilizing Bacteria and Fungi: Mechanisms, Strengthen Measures, and Development Prospect. Journal of Environmental Management. 2023. Vol. 344. 118511.
69. Mohapatra S., Bohidar S., Pradhan N., Kar R. N., Sukla L. B. Microbial Extraction of Nickel from Sukinda Chromite Overburden by Acidithiobacillus Ferrooxidans and Aspergillus Strains. Hydrometallurgy. 2007. Vol. 85, Iss. 1. pp. 1–8.
70. Simate G. S., Ndlovu S., Gericke M. Bacterial Leaching of Nickel Laterites Using Chemolithotrophic Microorganisms: Process Optimization Using Response Surface Methodology and Central Composite Rotatable Design. Hydrometallurgy. 2009. Vol. 98. pp. 241–246.
71. Johnson D. B., Plessis C. A. Biomining in Reverse Gear: Using Bacteria to Extract Metals from Oxidised Ores. Minerals Engineering. 2015. Vol. 75. pp. 2–5.
72. Swamy K. M., Narayana K. L., Misra V. N. Bioleaching with Ultrasound. Ultrasonics Sonochemistry. 2005. Vol. 12, Iss. 4. pp. 301–306.
73. Harris B., Magee J. Atmospheric chloride leaching: The way forward for nickel laterites. Proceedings of the TMS Fall Extraction and Processing Conference. 2003. Vol. 1. pp. 501– 515.
74. Harris B., White C., Jansen M., Pursell D. A New Approach to High Chloride Leaching of Nickel Laterites. ALTA Ni/Co 11, Perth, WA, May 15–17, 2006. pp. 1–20.
75. Harris B., Magee J., Atmospheric Chloride Leaching: The Way Forward for Nickel Laterites. Proceedings of the TMS Fall Extraction and Processing Conference, 2003. pp. 501–515.
76. Blain C. F. Mineral investment in Asia. A Comparative View Based on BHP Minerals' Experience. Aus. I.M.M. Bull. 1992. Vol. 4. рр. 65–72.
77. Harris G. B., Magee T. J., Lakshmanan V. I., Sridhar R. The Jaguar Nickel Inc. Sechol Laterite Project Atmospheric Chloride Leach Process. Proceedings of International Laterite Nickel Symposium 2004. TMS Annual Meeting. Charlotte, North Carolina, 14–18 March 2004. pp. 219–241.
78. Kosmukhambetov A. R. Behavior of the Main Components of the Oxidized Nickel ore of the Kempirsai Deposit During Hydrochloric Acid Leaching with Simultaneous Oxyhydrochlorination of the Pulp. Collection of Scientific Papers of «Kazmehanobr»: Technology, Benefication, Industrial Ecology. Almaty, 2003. pp. 52–63.
79. Zhatkanbaev E. E., Zhatkanbaeva Zh. K., Zhakienova A. T. Leaching of Nickel from the Oxidized Ores of Bugetkol Field. The Way of Science. 2014. Vol. 1, Iss. 9. pp. 18–20.
80. Kosmuhambetov A. R., Valishevskaya T. Yu., Omarova S. A., Khavalkairat В., Baymahanova S. B. Opening of Nikel-Cobalt Consisted Ore by the Method of the Muriatic Lixiviation Depending. Vestnik KazNTU im. K. I. Satpaeva. 2014. Iss. 5. pp. 340–344.

Full content Review of technology for hydrometallurgical processing of lateritic nickel ores over the past 20 years in the world
Back