Journals →  Chernye Metally →  2024 →  #6 →  Back

Gennady Gun's scientific school: to his 85th anniversary
ArticleName Determination of the gamma-percentage time to failure of ball studs of vehicle suspension and steering joints made of medium-carbon low-alloy steel
DOI 10.17580/chm.2024.06.07
ArticleAuthor F. A. Stolyarov, I. G. Gun, A. R. Vakhitov, A. V. Smirnov
ArticleAuthorData

Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia

F. A. Stolyarov, Postgraduate Student, e-mail: stolyarov.f.a@yandex.ru

 

Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia1 ; SPA BelMag, Magnitogorsk, Russia2

I. G. Gun, Dr. Eng., Prof.1, General Director2, e-mail: goun@belmag.ru

 

SPA BelMag, Magnitogorsk, Russia

A. R. Vakhitov, Cand. Eng., Chief Designer, e-mail: vakhitov@belmag.ru
A. V. Smirnov, Cand. Eng., Purchasing Director, e-mail: alexey.smirnov@belmag.ru

Abstract

One of the most important indicators that determine the reliability of car suspension and steering ball joints, in accordance with the requirements of domestic standards and technical specifications of automakers, is durability in operation, which, in particular, is characterized by the gamma-percentage operating time before failure of the ball studs. At the request of many automakers, in the process of designing suspension and steering components, it is necessary to determine the time to failure of the ball pins, during which an object failure will not occur with a probability of 90 %. The determination of this indicator is based on the analysis of data from a random sample of a two-parameter Weibull distribution obtained from the results of the experiment. This article discusses the procedure for determining the gamma-percentage time to failure of the ball pins of the steering ends of the Lada Largus, made of medium-carbon low-alloy steel.

keywords Quality level, ball joint, reliability, ball stud, gamma-percentage life time, fatigue strength, Weibull distribution
References

1. Reimpell J. Fahrwerktechnik: Lenkung. Translated from German. Moscow : Mashinostroenie, 1987. 232 p.
2. Gun I. G., Vakhitov A. R., Stolyarov F. A. et al. Calculation determination of the force of the plastic deformation onset when bending the pin of the ball outer steering end of a car by modeling the process of static tests. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta imeni G. I. Nosova. 2021. Vol. 19. No. 2. pp. 23–31.
3. GOST 52433–2005. Vehicles. Ball-and-socket hinges. Technical requirements and test methods. Introduced: 01.01.2007.
4. Gormakov A. N. Materials science and technology for processing structural materials in instrument making: textbook. Tomsk : Izdatelstvo Tomskogo politekhnicheskogo universiteta, 2010. 340 p.
5. Todorov R., Khristov Kh. Widmanstatten structure of carbon steels. Metal Science and Heat Treatment. 2004. Vol. 46. pp. 49–53.
6. Rymarz J., Niewczas F., Stoklosa J. Reliability evaluation of the city transport buses under actual conditions. Transport and Telecommunication. 2015. Vol. 16, Iss. 4. pp. 259–266.
7. Rahman M. M., Kadirgama K., Noor M. M., Rejab M. R. M., Kesulai S. A. Fatigue life prediction of lower suspension arm using strain-life approach. European Journal of Scientific Research. 2009. Vol. 3 pp. 437–450.
8. Kozłowski E., Borucka A., Szymczak T., Świderski A., Gil L. Predicting the fatigue life of a ball joint. Transport and Telecommunication. 2021. Vol. 22. No. 4. pp. 453–460.
9. Masilamani R., Suresh P., Saravanakumar J., Gowtham K., Deepak S. Predicition of fatigue life cycle on steering knuckle ball joint. National Conference on Trends in Automotive Parts Systems and Applications (TAPSA-2016). 2016. Vol. 5, Iss. 7. pp. 44–50.
10. Khatri N., Darsivan F., Faris W., Ismail A. Fatigue life study of suspension ball joints on the basis of ride quality. International Journal of Vehicle Noise and Vibration. 2020. Vol. 16. pp. 69–75.
11. Rodionov Yu. V., Voinov A. A., Petrenko V. O., Shmelev B. A. Study of the durability of ball joints for cars. Tekhnicheskoe regulirovanie v transportnom stroitelstve. 2017. No. 5 (25). pp. 42–44.
12. Boyko N. G., Ustimenko T. A. Theory and methods of engineering experiment: course of lectures. Donetsk : DonNTU, 2009. 158 p.
13. Gmurman V. E. Probability theory and mathematical statistics: textbook for universities. 9th edition. Moscow : Vysshaya shkola, 2003. 579 p.
14. Navidi W. Statistics for engineers and scientists. New York : McGraw-Hill Education, 2020. 910 p.

Language of full-text russian
Full content Buy
Back