Информация об авторе |
Federal State Unitary Enterprise “Special Design and Technological Bureau “Technolog”, Saint Petersburg, Russia
E. K. Ilves, Senior Specialist of the Quality Control Department, e-mail: ilves1997@mail.ru
Saint Petersburg State Institute of Technology (Technical University), Saint Petersburg, Russia
A. A. Blokhin, Head of the Department of Technology of Rare Elements and Nanomaterials Based on Rare Elements, Doctor of Technical Sciences, Professor, e-mail: blokhin@list.ru Yu. V. Murashkin, Associate Professor of the Department of Technology of Rare Elements and Nanomaterials Based on Rare Elements, Candidate of Chemical Sciences, e-mail: murashkin-1@mail.ru
R&D Center JSC Rusredmet Group of Companies, Saint Petersburg, Russia A. M. Chemekov, Deputy Head of the Analytical Laboratory, e-mail: achemekov@rusredmet.ru |
Библиографический список |
1. Vanadium and vanadium-containing products market review in Russia, the CIS and the world. Moscow : OOO IG Infomain, 2021. 100 p. 2. Kelley K. D., Scott C. T., Polyak D. E., Kimball B. E. Vanadium. Critical mineral resources of the United States — Economic and environmental geology and prospects for future supply. Eds. K. Schulz, R. Seal, D. Bradley, J. Deyoung. Reston, Virginia : U.S. Geological Survey, 2017. pp. U1–U36. DOI: 10.3133/pp1802U 3. Study on the review of the list of Critical Raw Materials. Final Report. Luxembourg : Publication Office of the European Union, 2017. 92 p. DOI: 10.2873/876644 4. Rychcik M., Skyllas-Kazacos M. Characteristics of a new all-vanadium redox flow battery. Power Sources. 1988. Vol. 22. pp. 59–67. DOI: 10.1016/0378-7753(88)80005-3 5. Kear G., Shah A. A., Walsh F. C. Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects. International Journal of Energy Research. 2012. Vol. 36, No. 11. pp. 1105–1120. DOI: 10.1002/er.1863 6. Choi C., Kim S., Kim R., Choi Y. et al. A review of vanadium electrolytes for vanadium redox flow batteries. Renewable and Sustainable Energy Reviews. 2017. Vol. 69. pp. 263–274. DOI: 10.1016/j.rser.2016.11.188 7. Vinco J. H., Domingos A. E., Espinosa D. C., Tenório J. A., Baltazar M. P. Unfolding the vanadium redox flow batteries: An indeep perspective on its components and current operation challenge. Journal of Energy Storage. 2021. Vol. 43. 103180. DOI: 10.1016/j.est.2021.103180 8. Xiang J., Huang Q., Lv X., Bai C. Extraction of vanadium from converter slag by two-step sulfuric acid leaching process. Journal of Cleaner Production. 2018. Vol. 170. pp. 1089–1101. DOI: 10.1016/j.jclepro.2017.09.255 9. Wen J., Jang T., Xu Y., Cao J., Xue X. Efficient extraction and separation of vanadium and chromium in high chromium vanadium slag by sodium salt roasting-(NH4)2SO4 leaching. Journal of Industrial and Engineering Chemistry. 2018. Vol. 71. pp. 327–325. DOI: 10.1016/j.jiec.2018.11.043 10. Peng H. A literature review on leaching and recovery of vanadium. Journal of Environmental Chemical Engineering. 2019. Vol. 7, No. 5. 103313. DOI: 10.1016/j.jece.2019.103313 11. Zhang Y., Zhang T.-A., Dreisinger D. C., Lv C. et al. Recovery of vanadium from calcification roasted-acid leaching tailing by enhanced acid leaching. Journal of Hazardous Materials. 2019. Vol. 369. pp. 632–641. DOI: 10.1016/j.jhazmat.2019.02.081 12. Xiang J., Wang X., Pei G., Huang Q., Lü X. Recovery of vanadium from vanadium slag by composite roasting with CaO/MgO and leaching. Transactions of Nonferrous Metals Society of China. 2020. Vol. 30. pp. 3114–3123. DOI: 10.1016/S1003-6326(20)65447-4 13. Peng Z., Wang Z., Li Y., Zhu Y., Xie K. Selective leaching of vanadium from calcification-roasted pellets of vanadium–titanium–iron concentrate by a cyclic two-stage sulfuric acid process. Minerals. 2022. Vol. 12, No. 12. 1613. DOI: 10.3390/min12121613 14. Yi Y., Sun H., You J., Zhang J. et al. Vanadium recovery from Na2SO4-added V–Ti magnetite concentrate via grate-kiln process. Transactions of Nonferrous Metals Society of China. 2022. Vol. 32. pp. 2019–2032. DOI: 10.1016/S1003-6326(22)65927-2 15. Busev A. I., Tiptsova V. G., Ivanov V. M. Handbook on analytical chemistry of rare elements. Moscow : Khimiya, 1978. 432 p. 16. Gilligan R., Nikoloski A. The extraction of vanadium from titanomagnetites and other sources. Minerals Engineering. 2020. Vol. 146. 106106. DOI: 10.1016/j.mineng.2019.106106 17. Ye G., Hu Y., Tong X., Lu L. Extraction of vanadium from direct acid leaching solution of clay vanadium ore using solvent extraction with N235. Hydrometallurgy. 2018. Vol. 177. pp. 27–33. DOI: 10.1016/j.hydromet.2018.02.004/ 18. Luo D., Huang J., Zhang Y., Liu H., Hu P. Highly efficient separation and extraction of vanadium from a multi-impurity leachate of vanadium shale using tri-n-octylmethylammonium chloride. Separation and Purification Technology. 2020. Vol. 230. 115842. DOI: 10.1016/j.seppur.2019.115842 19. Laskorin B. N., Nikulskaya G. N., Maurina A. G. Influence of the structure of macroporous sorbents on their sorption properties, when extracting polymer ions of metals. Ed. Laskorin B. N. Hydrometallurgy. Autoclave leaching. Sorption. Extraction. Moscow : Nauka, 1976. pp. 86–96. 20. Zeng L., Li Q., Xiao L., Zhang Q. A study of the vanadium species in an acid leach solution of stone coal using ion exchange resin. Hydrometallurgy. 2010. Vol. 105, No. 1. pp. 176–178. DOI: 10.1016/j.hydromet.2010.07.001 21. Nguyen T., Lee M. Recovery of molybdenum and vanadium with high purity from sulfuric acid leach solution of spent hydrodesulfurization catalysts by ion exchange. Hydrometallurgy. 2014. Vol. 147-148. pp. 142–147. DOI: 10.1016/j.hydromet.2014.05.01 22. Vinco J. H., Botelho Junior A. B., Duarte H. A., Espinosa D. C. R., Tenório J. A. S. Purification of an iron contaminated vanadium solution through ion exchange resins. Minerals Engineering. 2022. Vol. 176. 107337. DOI: 10.1016/j.mineng.2021.107337 23. Fan Y., Wang X., Wang M. Separation and recovery of chromium and vanadium from vanadium-containing chromate solution by ion exchange. Hydrometallurgy. 2013. Vol. 136. pp. 31–35. DOI: 10.1016/j.hydromet.2013.03.008 24. Li H.-Y., Li C., Zhang M., Wang K., Xie B. Removal of V(V) from aqueous Cr(VI)-bearing solution using anion exchange resin: equilibrium and kinetics in batch studies. Hydrometallurgy. 2016. Vol. 165, No. 6. pp. 381–389. DOI: 10.1016/j.hydromet.2015.10.018 25. El-Nadi Y., Awwad N., Nayl A. A comparative study of vanadium extraction by Aliquat-336 from acidic and alkaline media with application to spent catalyst. International Journal of Mineral Processing. 2009. Vol. 90. pp. 115–120. DOI: 10.1016/j.minpro.2009.03.005 26. Yang Y., Li H.-Y., Lin M.-M., Xie B. Batch studies for removing vanadium(V) and chromium(VI) from aqueous solution using anion exchange resin. Rare Metal Technology. Eds. H. Kim, B. Wesstrom, S. Alam, T. Ouchi et al. Springer International Publishing, 2018. pp. 291–298. DOI: 10.1007/978-3-319-72350-1_28 27. Ying Z., Chen М., Wu G., Li J. et al. Separation and recovery vanadium (V) and chromium (VI) using amide extractants based on the steric hindrance effect. Journal of Environmental Chemical Engineering. 2021. Vol. 9, No. 5. 105939. DOI: 10.1016/j.jece.2021.105939 28. Wen J., Sun Y., Ning P., Xu G. et al. Deep understanding of sustainable vanadium recovery from chromevanadium slag: Promotive action of competitive chromium species for vanadium solvent extraction. Journal of Hazardous Materials. 2022. Vol. 422. 12679. DOI: 10.1016/j.jhazmat.2021.126791 29. Lure Yu. Yu. Handbook on analytical chemistry. Moscow : Khimiya, 1989. 448 p. 30. Nguyen T., Lee M. Separation of molybdenum and vanadium from acid solutions by ion exchange. Hydrometallurgy. 2013. Vol. 136. pp. 65–70. DOI: 10.1016/j.hydromet.2013.03.007 31. Jeon J. H., Sola A. B. C., Lee J.-Y., Koduru J. R., Jyothi J. R. Separation of vanadium and tungsten from synthetic and spent catalyst leach solutions using an ionexchange resin. Royal Society of Chemistry. 2022. Vol. 12, No. 6. pp. 3635–3645. DOI: 10.1039/d1ra05253e |