Journals →  Obogashchenie Rud →  2024 →  #2 →  Back

TECHNOLOGICAL MINERALOGY
ArticleName Statistical forecast of ore processing parameters based on observations in thin sections
DOI 10.17580/or.2024.02.05
ArticleAuthor Zakharova A. A., Voytekhovsky Yu. L.
ArticleAuthorData

Empress Catherine II Saint Petersburg Mining University (St. Petersburg, Russia)

Zakharova A. A., Assistant, Candidate of Geological and Mineralogical Sciences, zakharova.alena27614@gmail.com

 

Herzen University (St. Petersburg, Russia)

Voytekhovsky Yu. L., Head of Chair, Doctor of Geological and Mineralogical Sciences, Professor, vojtehovskijj@herzen.spb.ru

Abstract

This article provides further details for the authors’ mineralogical and technological research in the field of predicting ore processing results through statistical structural analysis of intergranular intergrowths in petrographic thin sections and polished sections. This approach is based on the premise that ore mineral separation comes down to destruction of its contacts with the associated minerals. Using crystalline schists from a gold deposit as an example, a relationship has been identified between ore processing performance, as measured by the Bond and A×b indices, and the structural types of such schists using the classification previously proposed by the authors. The strongest ores in terms of the Bond index were represented by structural types S22 and S32. Higher index values are consistent with higher proportions of matrix–matrix contacts, mainly for mica. The strongest ores in terms of the A×b parameter were represented by structural types S21 and S31. The strength of the schists decreases with increasing grain sizes and proportions of monomineral contacts. The processing performance is also influenced by the structural positions of individual minerals. The results suggest that microscopic examination with statistical analysis of structures should be used at the early stages of mineralogical and technological mapping to predict the physical and mechanical properties of ores during processing. Like any statistical study, it requires both representative thin sections to establish samples characteristics and a representative collection of ores with varying structural types. The method developed by the authors may be used in geological exploration and mineralogical and technological work aided by computerized optical structure analyzers. This will enable the prediction of ore processing performance based on structural types of the ores in the early stages of deposit mapping.

keywords Gold ores, crystalline schists, technological mineralogy, processing performance forecast, Bond index, statistics of intergranular contacts, structural type
References

1. Fedotov P. K., Senchenko A. E., Fedotov K. V., Burdonov A. E. Studies of enrichment of sulfide and oxidized ores of gold deposits of the Aldan shield. Zapiski Gornogo Instituta. 2020. Vol. 242. pp. 218–227.
2. Marinin M., Marinina O., Wolniak R. Assessing of losses and dilution impact on the cost chain: case study of gold ore deposits. Sustainability. 2021. Vol. 13. DOI: 10.3390/su13073830
3. Novakov R. M., Kungurova V. E., Moskaleva S. V. Formation conditions of noble metal mineralization in sulfide cobalt-copper-nickel ores of Kamchatka (on the example of Annabergitovaya Shchel ore occurrence). Zapiski Gornogo Instituta. 2021. Vol. 248. pp. 209–222.
4. Gurman M. A., Shepeta E. D., Poltaretskaya A. E., Vasyanovich Yu. A. Results of porphyry copper-gold ore flotation. Gornyi Informatsionno-analiticheskiy Byulleten'. 2019. No. 8 (Special Issue 30). pp. 42–49.
5. Yushina T. I., Petrov I. M., Matveev A. I., Matveev I. I. Market overview of gold ore and the processing technologies and enrichment. Gornyi Informatsionno-analiticheskiy Byulleten'. 2018. No. 1 (Special Issue 1). pp. 408–437.
6. Izoitko V. M. Technological mineralogy and ore evaluation. St. Petersburg: Nauka, 1997. 586 p.
7. Kotova O. B., Ozhogina E. G. Mineralogical and technological methods for assessing difficult-to-process minerals. Materials of the XVII Geological Congress of the Komi Republic. 2019. Vol. III. pp. 319–322.
8. Shchiptsov V. V., Kotova O. B., Ozhogina E. G., Pirogov B. I. Technological mineralogy comprehensively. Proc. of the Karelian Scientific Center of the Russian Academy of Sciences. 2021. No. 10. pp. 44–66.
9. Van Duijvenbode J. R., Cloete L. M., Shishvan M. S., Buxton M. W. N. Interpretation of run-of-mine comminution and recovery parameters using multi-element geochemical data clustering. Minerals Engineering. 2022. Vol. 184. DOI: 10.1016/j.mineng.2022.107612
10. Aleksandrova T., Nikolaeva N., Afanasova A., Romashev A., Kuznetsov V. Selective disintegration justification based on the mineralogical and technological features of the polymetallic ores. Minerals. 2021. Vol. 11. DOI: 10.3390/min11080851
11. Duryagina A. M., Talovina I. V., Lieberwirth H., Ilalova R. K. Morphometric parameters of sulphide ores as a basis for selective ore dressing. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 527–538.
12. Lois-Morales P., Evans C., Weatherley D. Quantifying the relationship between particles’ strength and their mineralogical and textural characteristics. Minerals Engineering. 2023. Vol. 199. DOI: 10.1016/j.mineng.2023.108113
13. Aleksandrova T. N., Afanasova A. V., Kuznetsov V. V., Aburova V. A. Selection of copper-nickel sulfide ore flotation parameters based on floatability ranking of flotation components. Gornyi Informatsionno-analiticheskiy Byulleten'. 2022. No. 1. pp. 131–147.
14. Bacchuwar S. S., Mkandawire N. P., McGrath T., Lin C. L., Miller J. D. X-ray computed tomography for 3D analysis of gangue mineral rejection by gravity preconcentration of sulfidic gold ores. Mineral Processing and Extractive Metallurgy. 2019. Vol. 129, Iss. 1. pp. 49–63.
15. Lois-Morales P., Evans C., Weatherley D. Methodology for quantitative rock characterization using multiple imaging systems and random particles generation. MethodsX. 2022. Vol. 9. DOI: 10.1016/j.mex.2022.101807
16. Romashev A. O., Nikolaeva N. V., Gatiatullin B. L. Adaptive approach formation using machine vision technology to determine the parameters of enrichment products deposition. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 677–685.
17. Zubov V. P., Anisimov K. A. Resource-saving underground mining technology for diamond-bearing kimberlite ore under protective cushion below open pit mine bottom. Gornyi Zhurnal. 2023. No. 4. pp. 27–38.
18. Sokolov S. T., Khokhlov S. V., Bazhenova A. V. Design concepts for explosion products locking in chamber. Gornyi Informatsionno-analiticheskiy Byulleten'. 2023. No. 9–1. pp. 122–134.
19. Zakharova A. A., Voytekhovsky Yu. L. Methodology for predicting the washability of apatite ores (Kirovsky mine, Kola Peninsula). Obogashchenie Rud. 2022. No. 1. pp. 27–30.
20. Abramov A. A. Processing, beneficiation and integrated use of solid minerals. Moscow: MSMU Publishing House, 2004. Vol. II. 510 p.
21. Fedotov P. K., Senchenko A. E., Fedotov K. V., Burdonov A. E. Gravity-flotation gold-bearing ore concentration. Izvestiya Vuzov. Tsvetnaya Metallurgiya. 2021. Vol. 27, No. 1. pp. 4–15.
22. Fedotov P. K., Senchenko A. E., Fedotov K. V., Burdonov A. E., Vlasova V. V. Technology for processing lowsulfide gold-quartz ore. Izvestiya Tomskogo Politekhnicheskogo Universiteta. Inzhiniring Georesursov. 2022. Vol. 333, No. 6. pp. 178–189.
23. Warr L. N. IMA-CNMNC approved mineral symbols. Mineralogical Magazine. 2021. No. 85. pp. 291–320.
24. Voytekhovsky Yu. L., Zakharova A. A. Petrographic structures and Hardy–Weinberg equilibrium. Zapiski Gornogo Instituta. 2020. Vol. 242. pp. 133–138.
25. Pat. 2465353 Russian Federation.
26. Rudashevsky V. N., Rudashevsky N. S., Antonov A. V., Nabiullin F. M., Pastukhov D. M. Mineral processing of gold. Zapiski Rossiyskogo Mineralogicheskogo Obshchestva. 2017.
Vol. 146, No. 1. pp. 103–125.27. Voytekhovsky Yu. L. Quantitative analysis of petrographic structures and accessory subtraction method. Izvestiya VUZov. Geologiya i Razvedka. 2000. No. 1. pp. 50–54.
28. Handbook of ore beneficiation. Vol. 1. Preparatory processes. Moscow: Nedra, 1982. 367 p.
29. Lois-Morales P., Barbosa K., Evans C., Yahyaei M. A geometallurgical approach to comminution using primary breakage properties of ores. Conference: Procemin – Geomet. 2020. Santiago, Chile. 12 p.
30. Chitalov L. S., Lvov V. V. Comparative assessment of the Bond Ball Mill Work Index tests. Gornyi Informatsionnoanaliticheskiy Byulleten'. 2021. No. 1. pp. 130–145.
31. Lvov V. V., Chitalov L. S. Semi-autogenous wet grinding modeling with CFD-DEM. Minerals. 2021. Vol. 11. DOI: 10.3390/min11050485
32. Taranov V. A., Aleksandrova T. N. Estimate of the strength properties of the ore as a factor improvement of the effectiveness of the grinding process. Gornyi Informatsionno-analiticheskiy Byulleten'. 2015. No. 4. pp. 119–123.
33. Gerasimov A. M., Arsentyev V. A. Layered silicates and their effects on mineral processing. Obogashchenie Rud. 2018. No. 5. pp. 22–28.
34. Vaisberg L. A., Kononov O. V., Ustinov I. D. Fundamentals of geometallurgy. St. Petersburg: Russian Collection, 2020. 376 p.
35. Laskowski J. S. Anisotropic minerals in flotation circuits. Canadian Institute of Mining Journal. 2012. Vol. 3, No. 4. pp. 203–213.

Language of full-text russian
Full content Buy
Back