Journals →  Obogashchenie Rud →  2024 →  #2 →  Back

TECHNOLOGICAL MINERALOGY
ArticleName Enthalpy calculation for the formation of complex compounds with account of the fractional contributions of bond energies
DOI 10.17580/or.2024.02.04
ArticleAuthor Vydysh S. O., Bogatyreva E. V., Melnik F., Kartasheva A. I.
ArticleAuthorData

National University of Science and Technology MISIS (Moscow, Russia)

Vydysh S. O., Postgraduate Student, vydyshso@yandex.ru
Bogatyreva E. V., Professor, Doctor of Engineering Sciences, Associate Professor, Helen_Bogatureva@mail.ru
Melniс F., Postgraduate Student, filippmelnic@gmail.com
Kartasheva A. I., Postgraduate Student, anastasia162@yandex.ru

Abstract

The enthalpy of formation of chemical compounds, including those of natural origin, is an important characteristic when assessing the thermal effects of reactions in chemical and metallurgical processes and selecting the proper equipment designs for these effects. It is also critical for assessing the specific energy of atomization (energy density) and the associated properties of compounds, such as melting point, hardness, coefficient of linear thermal expansion, etc. The article substantiates the relevance of refining the formation enthalpy calculations for crystalline hydrates, double and basic salts through an analysis of formation enthalpy calculation results for forty complex inorganic compounds of copper, nickel, zinc, iron, lead, and rare earth metals using the V. V. Zuev equation based on the electronegativity concept. The calculation method proposed makes several assumptions: a single bond is assumed between a metal cation and water (hydrogens in a water molecule); each bond formed by hydrogen bridges from hydrogen to an anion is taken into account independently; no hydrogen bridges within hydroxyl groups are included in the calculation. The paper provided examples of formation enthalpy calculations for biankite (ZnSO4·6H2O) and antlerite Cu3(SO4)(OH)4. The study demonstrated a reduction in the calculation error compared to reference/experimental values: from 25.7 to 1.1 % for antlerite, from 20.1 to 0.6 % for langite, from 25.9 to less than 0.1 % for devilline, and from 8.7–9.1 to less than 0.3 % for Ce, La, Pr lanthanides. The proposed refined version of the formation enthalpy calculation for complex compounds considers the contributions of bond energies and the interaction between hydrogen groups (H2O) in crystalline hydrates, resulting in a reduction of the average calculation error from 20–30 to 1–2 %.

keywords thermodynamics, structural formula, enthalpy of formation, basic salts, double salts, crystal hydrates, bond energies
References

1. Zuev V. V., Potseluyeva L. N., Goncharov Yu. D. Crystal energy as a basis for evaluating the properties of solidstate materials (including magnesia cements). St. Petersburg, 2006. 139 p.
2. Vieillard P., Gailhanou H., Lassin A., Blanc P., Bloch E., Gaborea S., Fialips C. I., Made B. A predictive model of thermodynamic entities of hydration for smectites: Application to the formation properties of smectites. Applied Geochemistry. 2019. Vol. 110. DOI: 10.1016/j.apgeochem.2019.104423
3. Blanc P., Gherardi F., Vieillard P., Marty N. C. M., Gailhanou H., Gaboreau S., Letat B., Geloni C., Gaucher E. C., Made B. Thermodynamics for clay minerals: Calculation tools and application to the case of illite/smectite interstratified minerals. Applied Geochemistry. 2021. Vol. 130. DOI: 10.1016/j.apgeochem.2021.104986
4. Li X., Yang L., Zhou Q., Qi T., Liu G., Peng Z. A splitcombination method for estimating the thermodynamic properties (Gfo and Hfo) of multicomponent minerals. Applied Clay Science. 2020. Vol. 185. DOI: 10.1016/j.clay.2019.105406
5. Shtenberg M. V., Koroleva O. N., Bychinsky V. A. Calculation of thermodynamic properties of oxide compounds by regression analysis taking into account weight coefficients. Thermodynamics and materials science. Abstracts of the XV Symposium with international participation. Novosibirsk: NIIC SB RAS, 2023. p. 70.

6. Tikina I. V., Barbin N. M. Determination of thermophysical properties of complex oxide compounds containing Pb, Bi, Sn, Cd. Proc. of the V International scientific and technical conference «Modern methods and means of researching the thermophysical properties of substances». St. Petersburg: ITMO, 2019. pp. 234–237.
7. Katkeeva G. L., Burkitseterkyzy G., Morozov Yu. P., Zhunussov E. M. Thermodynamic analysis of oxidized copper minerals interaction with modified reagent. Bulletin of the Karaganda University. Chemistry Series. 2020. Vol. 97. pp. 110–116.
8. Khamitova A. I., Zinkicheva T. T., Khuziakhmetov R. Kh., Nazmutdinov R. R. Calculation of the thermal effect of the processes for producing Sorel cement with the composition 2Mg(OH)2·MgSO4·8H2O. Vestnik Tekhnologicheskogo Universiteta. 2018. Vol. 22, No. 6. pp. 21–24.
9. Egorov D. L., Khrapkovskii G. M., Shamov A. G. CalcTDFunc program for calculating thermodynamic parameters, based on data calculated in Gaussian. Vestnik Tekhnologicheskogo Universiteta. 2019. Vol. 22, No. 6. pp. 5–7.
10. Zuev V. V. Dependence of the enthalpy of formation by oxides of complex crystals from the difference in electronegativity of cations. Geokhimiya. 1986. No. 8. pp. 1160–1169.
11. Zuev V. V. On the assessment of the enthalpy of complex minerals formation with different-grade cations. Geokhimiya. 1986. No. 7. pp. 961–1167.
12. Kulikov B. F., Zuev V. V., Vainshenker I. A., Mitenkov G. A. Mineralogical reference book for processing technologist. Leningrad: Nedra, 1985. 264 p.
13. American mineralogist crystal structure database. URL: https://rruff.geo.arizona.edu/AMS/amcsd.php (accessed: 14.02.2024).
14. Zittlau A. H., Shi Q., Boerio-Goates J., Woodfield B. F., Majzlan J. Thermodynamics of the basic copper sulfates antlerite, posnjakite, and brochantite. Geochemistry. 2013. Vol. 73, Iss. 1. pp. 39–50.
15. Dabinett T. R., Humberstone D., Leverett P., Williams P. A. Synthesis and stability of wroewolfeite, Cu4SO4(OH)6·2H2O. Pure and Applied Chemistry. 2008. Vol. 80, Iss. 6. pp. 1317–1323.
16. Majzlan J., Zittlau A., Stevko M. Thermodynamic properties of secondary copper minerals. Proc. of the International symposium CEMC–2014. Brno: Czech Geological Society, 2014. pp. 89–90.
17. Reznitsky L. A. Crystal energy of oxides. Moscow: Dialog–MSU, 1998. 146 p.
18. Reznitsky L. A., Filippova S. E. Calculation of enthalpy of formation of manganites — materials for electronic equipment. Zhurnal Fizicheskoy Khimii. 2002. Vol. 76, No. 9. pp. 1543–1552.
19. Lidin R. A., Andreeva L. L., Molochko V. A. Constants of inorganic substances. Мoscow: Drofa, 2008. 685 p.
20. Bulakh A. G., Bulakh K. G. Physico-chemical properties of minerals and components of hydrothermal solutions. Leningrad: Nedra, 1978. 167 p.
21. Mineralienatlas – Fossilienatlas. Antlerite. URL: https://www.mineralienatlas.de/lexikon/index.php/MineralData?mineral=antlerite (accessed: 01.02.2024).
22. Thermal constants of substances. Moscow: USSR Academy of Sciences, 1978. Iss. 8. 536 p.
23. Shivaramaiah R., Anderko A., Riman R. E., Navrotsky A. Thermodynamics of bastnaesite: A major rare earth ore mineral. American Mineralogist. 2016. Vol. 101. pp. 1129–1134.
24. Donaldson M. H., Stevens R., Lang B. E., Boerio-Goates J., Woodfielda B. F., Putnam R. L., Navrotsky A. Heat capacities and absolute entropies of UTi2O6 and CeTi2O6. Journal of Thermal Analysis and Calorimetry. 2005. Vol. 81. pp. 617–625.
25. Standard thermodynamic values. URL: https://www.drjez.com/uco/ChemTools/Standard%20Thermodynamic%20Values.pdf (accessed: 24.01.2024).
26. Majzlan J., Drahota P., Filippi M., Grevel K.-D., Kahl W.-A., Plasil J., Boerio-Goates J., Woodfield B. F. Thermodynamic properties of scorodite and parascorodite (FeAsO4·2H2O), kaňkite (FeAsO4·3.5H2O), and FeAsO4. Hydrometallurgy. 2012. Vol. 117. pp. 47–56.
27. Kobylin P. M., Sippola H., Taskinen P. Thermodynamic modelling of aqueous Fe(II) sulfate solutions. Calphad. 2011. Vol. 35. pp. 499–511.
28. Hemingway B. S., Seal R. R., Chou I.-M. Thermodynamic data for modeling acid mine drainage problems: Compilation and estimation of data for selected soluble ironsulfate minerals. U. S. Geological survey open-file report 02-161. 2002. p. 13.
29. McCollom T. M., Robbins M., Moskowitz B., Berquo T. S., Jöns N., Hynek B. M. Experimental study of acidsulfate alteration of basalt and implications for sulfate deposits on Mars. Journal of Geophysical Research: Planets. 2013. Vol. 118. pp. 577–614.
30. Drouet C., Navrotsky A. Synthesis, characterization, and thermochemistry of K-Na-H3O jarosites. Geochimica et Cosmochimica Acta. 2003. Vol. 67, Iss. 3. pp. 2063–2076.
31. Haynes H. W. Jr. Thermodynamic solution model for trona brines. Thermodynamics. 2003. Vol. 49. pp. 1883–1894.
32. Patnaik P. Handbook of inorganic chemicals. McGraw-Hill, 2003. 1086 p.
33. Forray F. L., Smith A. M. L., Drouet C., Navrotsky A., Wright K., Hudson-Edwards K. A., Dubbin W. E. Synthesis, characterization and thermochemistry of a Pb-jarosite. Geochimica et Cosmochimica Acta. 2010. Vol. 74. pp. 215–224.
34. Neale Z. G., Barta M., Cao G. Faster diffusion and higher lithium-ion intercalation capacity in Pb-jarosite than Na-jarosite. ACS Applied Energy Materials. 2021. Vol. 4. pp. 2248–2256.

Language of full-text russian
Full content Buy
Back