Журналы →  Tsvetnye Metally →  2024 →  №4 →  Назад

NANOSTRUCTURED METALS AND MATERIALS
Название Plasma technology for producing ultrapure corundum
DOI 10.17580/tsm.2024.04.03
Автор Mustafaev А. S., Sukhomlinov V. S., Bazhin V. Yu., Bukovetskiy N. A., Surov А. V.
Информация об авторе

Saint Petersburg Mining University, Saint Petersburg, Russia

А. S. Mustafaev, Professor, Head of the Department of General and Technical Physics, Doctor of Physical and Mathematical Sciences, e-mail: alexmustafaev@yandex.ru

V. Yu. Bazhin, Professor, Head of the Department of Metallurgy, Doctor of Technical Science, e-mail: bazhin_vyu@pers.spmi.ru
N. A. Bukovetskiy, postgraduate student of the Department of General and Technical Physics, e-mail: bukovetn@gmail.com

 

Saint Petersburg State University, Saint Petersburg, Russia
V. S. Sukhomlinov, Professor of the Department of Optics, Doctor of Physical and Mathematical Sciences, e-mail: v_sukhomlinov@mail.ru

 

Institute of Electrophysics and Electric Power Engineering of the Russian Academy of Sciences, Saint Petersburg, Russia
А. V. Surov, Head of Plasmadynamic Systems Laboratory3, Candidate of Technical Sciences, e-mail: avsurov@ieeras.ru

Реферат

The article presents the results of testing plasma technology for producing ultrapure corundum. This material is widely used as an abrasive to produce microcircuits in the electronics industry and impact-resistant glasses in the optical industry. The article describes a rationale for choosing the technology parameters, the type of a plasma torch used, plasma gas, the design of the installation, and the parameters of the thermal insulation of the reactor. The key requirement to the technology to be developed is purity of the melt by reducing a concentration of impurities, when selecting temperature modes of the process. To carry out experiments on the technology, the authors chose a high-voltage three-phase plasma torch with electrodes from a tungsten-copper pseudo-alloy. To upgrade the process, a four-layer thermal shield of the reactor was designed with the first layer coated with molybdenum sheets to minimize its interaction with plasma gas and prevent premature melt crystallization. The experiments were conducted at the Institute of Electrophysics and Electric Power Engineering of the Russian Academy of Sciences. The produced samples of corundum were studied at the laboratories of the Common Use Center of Saint Petersburg Mining University. The studies proved a high-temperature transition and provided a rationale for conditions of recrystallization of aluminum oxide and a polymorphic transition to α-Al2O3. As a result, the samples of corundum were produced with an aluminum oxide of 99.8% and hardness of up to 92 HRC. The content of impurities in the samples was reduced by 4.67 times compared with the feedstock, and for some individual elements, for example, silicon, by 14 times. This is the first time when such results have been produced using plasma technology.
The research was funded by the Russian Science Foundation, grant No. 21-19-00139; grant No. 22-1-1-61-1 of Basis Foundation of Advances in Theoretical Physics and Mathematics.
The authors are grateful to specialists of the Institute of Electrophysics and Electric Power Engineering of the Russian Academy of Sciences, the Institute  of Solid State Chemistry of the Ural Branch, the Russian Academy of Sciences, Yekaterinburg, and the Common Use Center of Saint Petersburg Mining University.

Ключевые слова Corundum, plasma technology, aluminum oxide, ultrapure materials, plasma torch, high-temperature melting, thermal shield of the reactor
Библиографический список

1. Materials market data subscription (MMDS). Available at: https://www.semi.org/en/products-services/market-data/mmds
2. Rybkina E. A. The market of synthesized monocrystals (sapphire): reality and prospects. Innovatsii. 2016. Vol. 215, No. 9. pp. 106–110.
3. Esmantovich S. N. Influence of properties of abrasive materials on efficiency of abrasive machining. Equipment and tools for professionals. Metal treatment. 2015. No. 5. pp. 18–22.
4. Fetisov G. P., Karpman M. G., Matyunin V. M. Materials science and technology of metals : textbook. Moscow : GUP Izdatelstvo Vysshaya shkola, 2001. 624 p.
5. Mintsis M. Ya., Polyakov P. V., Sirazutdinov G. A. Electrometallurgy of aluminum. Novosibirsk : Nauka, 2001. 368 p.
6. Nalivayko A. Yu., Lysenko A. P. New technology of producing aluminum oxide suitable for producing artificial corundum crystals. Tsvetnaya metallurgiya. 2014. No. 5. pp. 44–46.
7. Kashcheev I. D., Strelov K. K., Mamykin P. S. Chemical technology of refractory : study guide. Moscow : Intermet Engineering, 2007. 746 p.
8. Ivanova L. I., Grobova L. S., Sokunov B. A., Sarapulov S. F. Induction crucible furnaces : study guide. Yekaterinburg : UGTU – UPI, 2002. 87 p.
9. Shkolnikov E. I., Ivanov P. P. Substantiation of technology for the growth of monocrystalline leucosapphire from technically pure corundum. Teplofizika vysokikh temperatur. 2021. Vol. 59, No. 2. pp. 242–247.
10. Altukhov A. Yu., Ageeva Yu. V., Ageev Yu. V., Novikov Yu. P. Method for producing fine-grained corundum. Patent RF, No. 2664149. Published: 25.09.2017.
11. Verneuil A. Production artificielle du rubis par fusion. Comptes Rendus (Paris). 1902. No. 135. pp. 791–794.
12. Bagdasarov Kh. S. High-temperature crystallization from the melt. Moscow : Fizmatlit, 2004. 160 p.
13. Kyropouls S. Ein Verfahren zur Herstellung groβer Kristall. Z. Anorg. U. Allg. Chem. 1926. Vol. 154, No. 1. pp. 308–313.
14. Balonin N. A., Suzdal V. S., Kozmin Yu. S. Synthesis of controllers of a simple structure for controlling crystallization processes. Bulletin of National Technical University KhPI. 2014. Vol. 1058, No. 15. pp. 3–11.
15. Ovsienko D. E. Nucleation and growth of crystals from the melt. Kyiv : Naukova dumka, 1994. 237 p.
16. Beloglazov I. I., Mustafaev A. S., Sukhomlinov V. S., Savchenkov S. A. et al. Plasma furnace for corundum production. Patent RF, No. 2746655. Published: 19.04.2021.
17. Smirnov A. N., Pilyushenko V. L., Momot S. V. Solidification of molten metal under external effects. Donetsk : VIK, 2002. 169 p.
18. Vasileva N. V., Fedorova E. R. Analysis of the quality of process control. Tsvetnye Metally. 2020. No. 10. pp. 70–76.
19. Boulos M. I., Fauchais P., Fardelle A., Pfender E. Fundamentals of plasma particle momentum and heat transfer. Plasma Spraying: Theory and Applications. 1993. pp. 3–57.
20. Mikheev M. A. Basics of thermal transfer. Moscow–Leningrad : Gose nergoizdat, 1956. 390 p.
21. Zhukov M. F., Zasypkin I. M. Electric arc generators of thermal plasma. Novosibirsk : Nauka. Sib. predpr. RAN, 1999. 712 p.
22. Engelsht V. S., Gurovich V. Ts., Desyatkov G. A. Low-temperature plasma. Vol. 1: Arc column theory. Novosibirsk : Nauka, 1990. 375 p.
23. Landau L. D., Lifshits E. M. Theoretical physics : study guide, in 10 volumes. Vol. VI: Hydrodynamics. Moscow : Nauka. Gl. red. fiz.-mat. lit. 1986. 736 p.
24. Bukhmirov V. V. Calculating a coefficient of convective heat emission (basic dimensionless equations) : methodology guideline. Ivanovo : Lenin Ivanovo State Power Engineering University, 2007. 39 p.
25. Aihara T., Kim J. K., Maruyama S. Effects of temperature-dependent fluid properties on heat transfer due to an axisymmetric impinging gas jet normal to a flat surface. Wärme – und Stoffübertragung. 1990. Vol. 25. pp. 145–153.
26. Korsunov K. A. Calculating parameters of electric arc plasma in the plasma torch channel. Uspekhi prikladnoy fiziki. 2013. Vol. 1, No. 6. pp. 724–733.
27. Galin N. M., Kirillov L. P. Heat-mass exchange (in nuclear power engineering). Moscow : Energoatomizdat, 1987. 376 p.
28. Bukhmirov V. V., Nosova S. V., Rakutina D. V. Transient heat conduction. Reference materials for solving problems : methodology guideline. Ivanovo : Lenin Ivanovo State Power Engineering University, 2005. 32 p.
29. McBride B. J., Zehe М. J., Gordon S. NASA Glenn coefficients for calculating thermodynamic properties of individual species. Report Number: NASA/TP-2002-211556, September 2002. Ohio. 298 p.
30. New reference book for chemists and technologists, chemical equilibrium. Properties of solutions. Zinchenko A. V., Izotova S. G. Saint Petersburg : ANO NPO Professional, 2004. 998 p.
31. Seith W. Diffusion of metals. Moscow : Izd-vo inostrannoy literatury, 1958. 381 p.
32. Halmann M., Frei A., Steinfeld A. Carbothermal reduction of alumina: thermochemical equilibrium calculations and experimental investigation. Energy. 2007. No. 32. pp. 2420–2427.
33. Lacamera A. F. Carbothermic aluminium production using scrap aluminium as a coolant. Patent US, No. 6475260. Published: 05.11.2002.
34. Kruzhilin G. N. Study on a thermal boundary layer. Journal of technical physics. 1936. Vol. 6, No. 3. pp. 205.
35. Cherny G. G. Gas dynamics. Moscow : Nauka, Glavnaya redaktsiya fiz.-mat. literatury, 1988. 424 p.
36. Kison V. E., Mustafaev A. S., Sukhomlinov V. S. Heat exchange between a plasma torch jet and the heated surface of molten aluminum oxide for nitrogen, argon and hydrogen. Mezhdunarodnyy nauchno-issledovatelskiy zhurnal. 2021. Vol. 109, No. 7. pp. 35–42.
37. Concise reference book on chemistry. Rabinovich V. A., Khavin Z. Ya. Leningrad : Knimiya, 1977. 170 p.
38. Volkov A. V., Kazanskiy N. L., Moiseev O. Yu., Poletaev S. D. Thermaloxidative degradation of molybdenum films by laser ablation. Journal of technical physics. 2015. Vol. 85, No. 2. pp. 107–111.
39. Reference book for designers in mechanical engineering. Vol. 3. Anufriev V. I. Moscow : Mashinostroenie, 2001. 859 p.
40. Safronov A. A., Kuznetsov V. E., Dudnik Yu. D., Shiryaev V. N. et al. Study on the electrode erosion in high-power, single-chamber, three-phase alternating-current plasma torches. Teplofizika vysokikh temperatur. 2021. Vol. 59, No. 3. pp. 330–336.
41. Kuznetsov V. E., Safronov A. A., Shiryaev V. N., Vasileva O. V. et al. Study on erosion of electrodes in AC and DC plasma torches. Applied physics. 2019. No. 3. pp. 24–30.
42. Tumanov Yu. N. Plasma, high-frequency, microwave and laser technologies in chemical and metallurgical processes. Moscow : Fizmatlit, 2010. 968 p.
43. Budin A. V., Kolikov V. A., Rutberg F. G. Influence of current and temperature of plasma-forming gas on erosion of electrodes of a discharge chamber of high-power pulse plasma torches. Journal of technical physics. 2007. Vol. 77, No. 8. pp. 49–53.
44. Kuznetsov V. E., Kiselev A. A., Ovchinnikov R. V., Dudnik Yu. D. Electrodes of single-phase AC plasma torches and materials for their manufacturing. Saint Petersburg Polytechnic University Journal: Physics and Mathematics. 2012. No. 2. pp. 100–104.
45. Kison V. E., Mustafaev A. S., Sukhomlinov V. S. Use of plasma torches of higher voltage, when producing ultrapure materials. Collection of research papers of the 3rd All-Russian Scientific Conference on Advanced Educational Technologies for Training Specialists in the Field of Natural Resources Sector. 2020. Vol. 21, No. 3. pp. 1607–1614.
46. Khomich V. A., Ryabtsev A. V., Didyk E. G., Zhovtyanskiy V. A. et al. Simulation of processes of atomic nitrogen generation in glow-discharge plasma in the nitrogen-argon mixture. Technical physics letters. 2010. Vol. 36, No. 19. pp. 91–99.
47. GOST 30558–98. Smelter grade alumina. Specifications. Introduced: 07.07.2000.
48. Surov A. V., Popov S. D., Popov V. E. Subbotin D. I. et al. Multi-gas AC plasma torches for gasifcation of organic substances. Fuel. 2017. Vol. 203. pp.1007–1014.

Language of full-text русский
Полный текст статьи Получить
Назад