Journals →  Tsvetnye Metally →  2024 →  #4 →  Back

COMPOSITES AND MULTIPURPOSE COATINGS
ArticleName Modification of cast aluminum matrix composite materials with barium
DOI 10.17580/tsm.2024.04.02
ArticleAuthor Deev V. B., Prusov E. S., Ri E. Kh., Shabaldin I. V.
ArticleAuthorData

Wuhan Textile University, Wuhan, China1 ; Vladimir State University named after Alexander and Nikolay Stoletovs, Vladimir, Russia2 ; National University of Science and Technology MISIS, Moscow, Russia3

V. B. Deev, Professor of the School of Mechanical Engineering and Automation1, Chief Researcher2, Professor of the Department of Metal Forming3, Doctor of Technical Sciences, Professor, e-mail: deev.vb@mail.ru

 

Vladimir State University named after Alexander and Nikolay Stoletovs, Vladimir, Russia

E. S. Prusov, Associate Professor of the Department of Functional and Constructional Materials Technology, Candidate of Technical Sciences, Associate Professor, e-mail: eprusov@mail.ru

I. V. Shabaldin, Research Assistant of the Department of Functional and Constructional Materials Technology, e-mail: shabaldinivan@mail.ru

 

Pacific State University, Khabarovsk, Russia

E. Kh. Ri, Head of Higher School of Industrial Engineering, Polytechnic Institute4, Doctor of Technical Sciences, Professor, e-mail: erikri999@mail.ru

Abstract

The study is aimed at investigating the peculiarities of the formation of the structure and alterations in the tribological properties of cast aluminum matrix composite materials based on the pseudo-binary Al – Mg2Si system when modified with barium within a range of 0.05–0.25 wt.%. It is demonstrated that the addition of barium from 0.05 to 0.15 wt.% results in a reduction in the sizes of endogenous reinforcing particles Mg2Si in Al + 15 wt.% Mg2Si composite materials. There is a noted trend towards decreasing the sizes of Mg2Si particles to ~19.58 μm, which is 32% less than in the unmodified state. A further increase in the barium content leads to a growth of particle sizes and their non-uniform distribution across the cross-section of the ingot. A similar change in the structure is observed for the Al + 25 wt.% Mg2Si composite. In this case, the addition of barium induces a morphological transformation of the crystals of the reinforcing phase accompanied by changes in their average sizes depending on the concentration of the modifying additive. It has been established that the modifying treatment of the composites significantly reduces the coefficient of friction and mass wear during dry friction with steel.
The research was funded by the Russian Science Foundation, grant No. 20-19-00687-П, https://rscf.ru/project/23-19-45019/.

keywords Сast composite materials, modification, Al – Ba master alloy, structural and morphological characteristics, Mg2Si particles, tribological behavior
References

1. Georgatis E., Lekatou A., Karantzalis A. E., Petropoulos H. et al. Development of a cast Al – Mg2Si – Si in situ composite: Microstructure, heat treatment, and mechanical properties. J. Mater. Eng. Perform. 2013. Vol. 22. pp. 729–741.
2. Liu Z., Liu X.-M. Research on wear resistance of Mg2Si reinforced hypereutectic Al – Si alloy composite. Advanced Materials Research. 2013. Vol. 619. pp. 553–556.
3. Biswas P., Mondal M.K., Mandal D. Effect of Mg2Si concentration on the dry sliding wear behavior of Al – Mg2Si composite. Journal of Tribology. 2019. Vol. 141, No. 8. 081601.
4. Biswas P., Mondal M. K., Roy H., Mandal D. Microstructural evolution and hardness property of in situ Al – Mg2Si composites using one-step gravity casting method. Canadian Metallurgical Quarterly. 2017. Vol. 56. pp. 340–348.
5. Moharami A., Razaghian A., Babaei B., Ojo O. et al. Role of Mg2Si particles on mechanical, wear, and corrosion behaviors of friction stir welding of AA6061-T6 and Al – Mg2Si composite. Journal of Composite Materials. 2020. Vol. 54, No. 26. pp. 4035–4057.
6. Ghiasinejad J., Emamy M., Ghorbani M.R., Malekan A. Wear behavior of Al – Mg2Si cast in-situ composite: effect of Mg2Si different volume fractions. AIP Conference Proceedings. 2010. Vol. 1252. pp. 1012–1017.
7. Bhandari R., Mallik M., Mondal M. K. Microstructure evolution and mechanical properties of in situ hypereutectic Al – Mg2Si composites. AIP Conference Proceedings. 2019. Vol. 2162. 020145.
8. Srinivas V., Singh V. Development of in situ as cast Al-Mg2Si particulate composite: Microstructure refinement and modification studies. Transactions of the Indian Institute of Metals. 2012. Vol. 65, No. 6. pp. 759–764.
9. Deev V. B., Prusov E. S., Ri E. H. Physical methods of processing the melts of metal matrix composites: current state and prospects. Russian Journal of Non-Ferrous Metals. 2022. Vol. 63, No. 3. pp. 292–304.
10. Deev V. B., Prusov E. S., Ri E. Kh. Microstructural modification of in situ aluminum matrix composites via pulsed electromagnetic processing of crystallizing melt. Non-Ferrous Metals. 2023. No. 1. pp. 36–40.
11. Ghandvar H., Idris M. H., Ahmad N., Emamy M. Effect of gadolinium addition on microstructural evolution and solidification characteristics of Al –15% Mg2Si in-situ composite. Materials Characterization. 2018. Vol. 135. pp. 57–70.
12. Zhang Y., Li Q., Shi L., Chen Z. et al. Influence of Nd – Ti – B compound modification treatment on microstructure and properties of Al – 18 Mg2Si alloy. Special Casting and Nonferrous Alloys. 2017. Vol. 37, No. 5. pp. 545–549.
13. Li Y., Liu T., Chen S., Ren Y. Effect of Ce inoculation on microstructure and mechanical properties of in situ Al – 20%Mg2Si composite. International Journal of Metalcasting. 2019. Vol. 13, No. 2. pp. 331–336.
14. Liu T., Li Y., Ren Y., Wang W. The microstructure and mechanical characterization of Al – 30%Mg2Si composite with Y inoculation addition. Materials Research Express. 2018. Vol. 5, No. 7. 076512.
15. Jin Y., Fang H., Wang S., Chen R. et al. Effects of Eu modification and heat treatment on microstructure and mechanical properties of hypereutectic Al – Mg2Si composites. Materials Science and Engineering: A. 2022. Vol. 831. 142227.

16. Si Yi. Effect of Pr modification treatment on the microstructure and mechanical properties of cast Al – Mg2Si metal matrix composite. Advanced Materials Research. 2014. Vol. 936. pp. 23–27.
17. Liu Y. T., Tong X., Lin J. X., Niu L. Y. et al. The influences of holmium on microstructure and properties of in situ Mg2Si/Al composites. Advanced Materials Research. 2014. Vol. 900. pp. 154–159.
18. Rousta Z., Tohidlou E., Khosravi H. Influence of erbium addition on the microstructural evolution and tensile properties of Al/Mg2Si in-situ metal matrix composites. Iranian Journal of Materials Science and Engineering. 2021. Vol. 18. pp. 71–79.
19. Deev V., Prusov E., Shurkin P., Ri E. et al. Effect of La addition on solidification behavior and phase composition of cast Al – Mg – Si alloy. Metals. 2020. Vol. 10, No. 12. 1673.
20. Emamy M., Khorshidi R., Honarbakhsh Raouf A. The influence of pure Na on the microstructure and tensile properties of Al – Mg2Si metal matrix composite. Materials Science and Engineering: A. 2011. Vol. 528, No. 13–14. pp. 4337–4342.
21. Farahany S., Ghandvar H., Bozorg M., Nordin A. et al. Role of Sr on microstructure, mechanical properties, wear and corrosion behaviour of an Al – Mg2Si – Cu in-situ composite. Materials Chemistry and Physics. 2020. Vol. 239. 121954.
22. Khorshidi R., Honarbakhsh Raouf A., Emamy M., Campbell J. The study of Li effect on the microstructure and tensile properties of cast Al – Mg2Si metal matrix composite. Journal of Alloys and Compounds. 2011. Vol. 509, No. 37. pp. 9026–9033.
23. Prusov E., Shabaldin I., Deev V. Quantitative characterization of the microstructure of in situ aluminum matrix composites. Journal of Physics: Conference Series. 2021. Vol. 2131. 042040.

Language of full-text russian
Full content Buy
Back