Journals →  Tsvetnye Metally →  2024 →  #3 →  Back

RADIOACTIVE ELEMENTS
ArticleName Prospects of using laser technologies to work with radioactive materials
DOI 10.17580/tsm.2024.03.02
ArticleAuthor Zharikov V. M., Evstifeeva N. A., Gerasimova A. A., Buzaev M. F.
ArticleAuthorData

National University of Science and Technology MISIS, Moscow, Russia

V. M. Zharikov, Associate Professor of the Department of Technological Equipment Engineering, Candidate of Technical Sciences, e-mail: Zharicow@yandex.ru
N. A. Evstifeeva, Associate Professor of the Department of Technological Equipment Engineering, Candidate of Technical Sciences
A. A. Gerasimova, Associate Professor of the Department of Technological Equipment Engineering, Candidate of Technical Sciences, e-mail: gerasimova.aa@misis.ru
M. F. Buzaev, Postgraduate Student of the Department of Technological Equipment Engineering

Abstract

Laser isotope separation used when working on radioactive materials both for isotope separation and enrichment, and for cleaning surface contamination of radioactive materials, has comparable technological methods of exposure to laser radiation on a vaporized material with a radioactive component. The paper proposes an approach based on the principles of operation of a magnetohydrodynamic (MHD) generator with the addition of gold nanoparticles to a mixture in the working area and the use of an additional laser exposure to irradiation of combustion products, including a copper vapor pumping laser, to solve the problem of producing 103Pd for medical purposes. In light of the technological process peculiarities, the MHD generator ensures a significant increase in the temperature mode, entailing a change in the conventional material for the walls of the combustion chamber and the electrodes of the device to solve the task. Upon completion of the research part and based on experimental results, the authors will develop the first prototype of the installation as a whole.

keywords Laser isotope separation, radioactive waste, nanoparticles, MHD generator, copper vapor laser, resource, disposal
References

1. Kiernan V. Nuclear Fuel Corporation finally gets nod to go private. Laser Focus World. 1977. Vol. 33.
2. Warner B. E. An overview at copper-laser development for isotope separation. Proc. New Developments and Applications in Gas Lasers. 1987. Vol. 0737. DOI: 10.1117/12.939660
3. Shinkaryov A. S., Ozherelkov D. Y., Pelevin I. A., Eremin S. A. et al. Laser fusion of aluminum powder coated with diamond particles via selective laser melting: powder preparation and synthesis description. Coatings. 2021. Vol. 11, No. 10. DOI: 10.3390/coatings11101219
4. Grant B. Lasers improve uranium enrichment. Photon. Spectra. 1997. Vol. 31.
5. Veiko V. P., Nikishin G. D., Smirnov V. N. A mobile laser complex for deactivation of nuclear submarines. Inter-Industry Information and Analytical Journal Industry. 2006. No. 1. pp. 25–34.
6. Radyuk A. G., Gerasimova A. A. Development of a method for calculating the thickness of thermal-spray aluminum coating used to protect low-alloy steel during heating for rolling. Metallurgist. 2018. Vol. 62. pp. 176–180. DOI: 10.1007/s11015-018-0641-y
7. Chichenev N. A., Karfidov A. O., Chicheneva O. N., Pashkov A. N. et al. Technological factors of laser hardening of rolls of multi-roll mills. Metallurgist. 2023. Vol. 66, No. 11. pp. 1562–1572. DOI: 10.1007/s11015-023-01471-x
8. Gorbatyuk S., Kondratenko V., Sedykh L. Tool stability analysis for deep hole drilling. MATEC Web of Conferences. 2018. Vol. 224. 01035.
9. Shoygu S. K. Civil defense. Encyclopedia. In 4 volumes. Vol. II (К–О). Moscow : ZAO FID Delovoy ekspress, 2007. 548 p.
10. A radioactive waste management system in Russia. Available at: https://rusecounion.ru/ru/radioactivewastemanagementsystem?ysclid (accessed: 22.11.2023).
11. Opachko I. I., Shevera V. S. Study on the interaction between a copper vapor laser radiation and the surface of solids. Processes of elementary interactions in atoms : collection of papers. Uzhhorod : Uzhhorod State University, 1985. pp. 189–198.
12. Simakin A. V., Shafeev G. A. Influence of a laser radiation of nanoparticles in water solutions of uranium salt on activity of nuclides. Kvantovaya Elektronika. 2011. Vol. 41, No. 7. pp. 614–618.
13. Zharikov V. M., Gorbatyuk S. M., Nagovitsyn V. A., Shinkarev A. S. Production of silver nanoparticles by laser ablation in liquid and their potential use in medicine. Tsvetnye Metally. 2023. No. 9. pp. 46–50.
14. Veremeevich A. N., Gorbatyuk S. M., Zharikov V. M., Nagovitsyn V. A. Potential application of laser equipment for metal working. Zagotovitelnye proizvodstva v mashinostroenii. 2021. Vol. 19, No. 7. pp. 331–335. DOI: 10.36652/1684-1107-2021-19-7-331-335
15. Evstifeeva N. A., Gurdiumov S. A., Kleimenov A. A., Gerasimova A. A. Methods of automated detection of travel points when training a collaborative robot. BIO Web of Conferences. 2024. Vol. 84. 02002.
16. Demichev I. A., Sidorov A. I. Numerical simulation of optical properties of metallic nanoparticles. Study guide on a laboratory practicum. Saint Petersburg : ITMO University, 2016. 52 p.
17. Barmina E. V., Simakin A. V., Shafeev G. A. Laser-induced caesium-137 decay. Kvantovaya Elektronika. 2014. Vol. 44, No. 8. pp. 791–792.
18. Morozova I. G., Naumova M. G., Nagovitsyn V. A., Kazbekov R. Y. Qualitative phase analysis of oxide films on a steel 12KH18N10T surface formed as a result of applied laser marking. Metallurgist. 2023. Vol. 67, No. 1-2. pp. 191–200. DOI: 10.52351/00260827_2023_02_63
19. Gozhev D. A., Bochkarev S. G. et al. Optimization of the laser-induced generation of thermonuclear neutrons from micro-droplet plasma. Bulletin of the Lebedev Physics Institute. 2022. No. 2. pp. 20–29.
20. V. M. Zharikov. Fullerene production method. Invention application, No. RU2010108903. Applied: 03.11.2010. Published: 20.09.2011. 1 p.
21. Clinical guidelines: Diagnosis and treatment of prostate cancer. The All-Russian Union of Public Associations of the Russian Oncology Association. Moscow, 2014. Available at: http://www.oncology.ru (accessed: 22.11.2023).
22. Zharikov V. M. Study on physical processes of the interaction between a copper vapor laser radiation and materials of electronic engineering and development of a technology for their precision machining: thesis … of Candidate of Technical Sciences: 05.03.07. Fryazino, 1999. 110 p.
23. Engineers reference book. Approximate heat losses (thermal power) of open water surfaces. Available at: https://dpva.ru/Guide/GuidePhysics/GuidePhysicsHeatAndTemperature/ComnustionEnergy/HeatValueWaste/ (accessed: 22.05.2023).

Language of full-text russian
Full content Buy
Back